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Abstract. In the first part of this paper we develop a theory for image restoration with a
learned regularizer that is analogous to that of Meyer's geometric characterization of solutions of
the classical variational method of Rudin--Osher--Fatemi (ROF). The learned regularizer we use is a
Kantorovich potential for an optimal transport problem of mapping a distribution of noisy images
onto clean ones, as first proposed by Lunz, \"Oktem, and Sch\"onlieb. We show that the effect of their
restoration method on the distribution of the images is an explicit Euler discretization of a gradient
flow on probability space, while our variational problem, dubbed Wasserstein ROF (WROF), is the
corresponding implicit Euler discretization. We obtain our geometric characterization of the solution
in this learned regularizer setting by first proving a much more general convex analysis theorem for
variational problems having solutions characterized by projections. We then use optimal transport
arguments to obtain the corresponding theorem for WROF from this general result, as well as a
natural decomposition of a transport map into large scale ``features"" and small scale ``details,"" where
scale refers to the magnitude of the transport distance. In the second part of the paper we leverage our
theory for restoration with learned regularizers to analyze two algorithms which iterate WROF. We
refer to these as iterative regularization and multiscale transport. For the former we obtain a proof
of convergence to the clean data. For the latter we produce successive approximations to the target
distribution that match it up to finer and finer scales. These two algorithms are in complete analogy to
well-known effective methods based on ROF for iterative denoising, respectively hierarchical image
decomposition. We also obtain an analogue of the Tadmor--Nezzar--Vese energy identity, which
decomposes the Wasserstein 2 distance between two measures into a sum of nonnegative terms that
correspond to transport costs at different scales.

Key words. variational image restoration, learned regularizers, optimal transport, multiscale
optimal transport
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1. Introduction. A well-known classical method for image restoration is the
total variation (TV) approach of Rudin, Osher, and Fatemi (ROF) [29]. In this
technique, a noisy image f \in L2(\BbbR 2) is restored by solving the problem

min
u\in L2(\BbbR 2)

1

2
\| u - f\| 2L2(\BbbR 2) + \lambda \| u\| TV .(1.1)

Here, \| u\| TV is the TV-norm of u, a regularizer known for promoting smoothness while
preserving edges. Related to (1.1) is the more recent variational denoising method
of [21]. The important novelty of [21] is that it uses a learned regularizer instead
of the TV-norm to impose regularity. The motivation for this is that one may be
able to obtain a more effective regularizer---and experiments show that this is in fact
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1115

the case---by learning it from datasets of noisy and clean images rather than using a
handcrafted one. The particular learned regularizer proposed in [21] is a Kantorovich
potential u0 for the Wasserstein 1 distance W1(\mu ,\nu ), where \mu and \nu are probability
distributions of noisy and clean data, respectively, on a compact and convex domain
\Omega \subset \BbbR d. That is, u0 solves the problem

sup
u\in 1-Lip(\Omega )

\int 
\Omega 

u(x)d\mu (x) - 
\int 
\Omega 

u(y)d\nu (y),

where 1-Lip(\Omega ) is the set of functions with Lipschitz constant 1 on \Omega . The solution
u0 is thus incentivized to take large values on the noisy data \mu and small values on
the real data \nu , justifying its role in restoring a noisy image1 x0 \sim \mu by solving

min
x\in \Omega 

1

2
| x - x0| 2 + \lambda u0(x).(1.2)

Experiments in [21] show that denoising performance is improved by using this learned
regularizer as opposed to the TV-norm.

The ROF model has been intensively studied and has a well-developed and beau-
tiful theory (e.g., [23, 8, 9, 10]). Let us briefly outline some of the results in [23].
The solution u\lambda to (1.1) can be described geometrically as the projection of 0 onto
a certain norm ball of radius \lambda centered at f . Moreover, the wavelet coefficients of
the residual f  - u\lambda satisfy an \ell \infty bound in terms of \lambda , and an approximate solution
to (1.1) can be obtained via soft thresholding of the wavelet coefficients of f . Build-
ing on these results, (1.1) can be solved iteratively to obtain iterative denoising (see
[4] or section 7.1 of [32]) and the nonlinear hierarchical image decomposition of [33].
The latter can be viewed as nonlinear harmonic analysis of the image into compo-
nents at finer and finer scale, and the analogy is further strengthened by an elegant
corresponding energy equality.

We were motivated by these results for ROF to search for a corresponding theory
for a learned regularizer problem related to (1.2). The first part of this paper estab-
lishes theorems analogous to those of [23] for a learned regularizer setting. It also
includes a decomposition of a certain transport map into large scale ``features"" and
small scale ``details""; in this context, scale refers to the magnitude of the transport
distance. The second part of the paper leverages our results to analyze two natural
iterative optimal transport procedures. We refer to these as iterative regularization
and multiscale transport, as they are in correspondence with iterative denoising with
ROF and the multiscale image decomposition of [33]. For the former, we prove con-
vergence toward the clean data distribution \nu . The latter has a richer structure and
modifies \nu at each stage to obtain a ``sketch"" of \mu which is indistinguishable from it
up to a predefined scale. Our results in this direction also include an energy iden-
tity analogous to that of [33] which decomposes the squared Wasserstein 2 distance
W 2

2 (\mu ,\nu ) into a sum of nonnegative terms which picks out the scales of transport.
While (1.2) is a pointwise formulation of image restoration, the setting is more

global in that u0 depends on the distribution \mu and \nu of noisy and clean images. We
have thus found it more natural to analyze the measure obtained by modifying \mu with
the solution map to (1.2). Taking this as a starting point, the main object of study
in this paper is

inf
\rho \in \scrP (\Omega )

1

2
W 2

2 (\mu ,\rho ) + \lambda W1(\rho , \nu ).(WROF)

1Images are taken as vectors in \BbbR d here, unlike (1.1), where they are elements of L2(\BbbR 2).
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1116 TRISTAN MILNE AND ADRIAN NACHMAN

Here \scrP (\Omega ) is the space of Borel probability measures on \Omega , and for p \geq 1, Wp :
\scrP (\Omega ) \times \scrP (\Omega ) \rightarrow \BbbR is the Wasserstein p distance; for more background on optimal
transport we refer the reader to [30] or [34]. Given that \mu consists of noisy images,
and \nu is a distribution of clean images, we view 1

2W
2
2 (\mu ,\rho ) as a fidelity term while

W1(\rho , \nu ) measures regularity. As we will see in Theorems 1.3 and 1.6, this problem
has properties which are in exact correspondence with the aforementioned results for
ROF. As a consequence we call it Wassertein ROF (or WROF for short).

To motivate the study of (WROF), let us specify its relationship to the image
denoising technique of [21]. We will show, in Lemma 3.3, that the measure obtained
by pushing \mu forward under the solution map of (1.2) is the unique solution to

inf
\rho \in \scrP (\Omega )

1

2
W 2

2 (\rho ,\mu ) + \lambda \langle u0, \rho \rangle .(1.3)

Since u0 is a subgradient of the convex functional \mu \mapsto \rightarrow W1(\mu ,\nu ), (1.3) can be viewed as
an explicit Euler discretization of a gradient flow on the space \BbbW 2(\Omega ) of probability
distributions metrized by the Wasserstein 2 distance. A step of the implicit Euler
discretization of the same flow is (WROF). We focus on (WROF), as opposed to (1.3),
because in general the implicit method has better properties than the explicit one. We
note, however, that in certain settings the two approaches coincide (see Proposition
3.5). In addition, the implicit Euler approach retains a pointwise reconstruction
method; there is a continuous function \varphi \lambda such that the solution \rho \lambda to (WROF) is
obtained by modifying \mu pointwise by the solution map for

inf
x\in \Omega 

1

2
| x - x0| 2  - \varphi \lambda (x).(1.4)

In fact, \varphi \lambda is a Kantorovich potential for the transport from \mu to \nu under the cost
function c2,\lambda defined in (1.7) (see Proposition 1.4). In this sense, the solution to
(WROF) is obtained via restoration with a learned regularizer  - \varphi \lambda . Moreover, \varphi \lambda can
be taken so that 1

2 | x| 
2 - \varphi \lambda (x) is convex, which implies that the pointwise restoration

algorithm (1.4) has the additional benefit of being a convex optimization problem; in
this light, (1.4) bears a similarity to the convex learned regularizers of [28]. We also
suspect that restoration via (1.4) may be more effective than (1.2), since Proposition
1.8 shows that iterations of this procedure provably converge to the clean image
distribution \nu .

In the remainder of this section we will summarize our main results, with subsec-
tion 1.1 describing our geometric characterization of the solution of (WROF), while
subsections 1.2 and 1.3 outline our iterative procedures.

1.1. Geometric characterization of the solution of (WROF). In this sec-
tion we provide analogues in the setting of a learned regularizer of results giving a
geometric characterization of the solution to ROF.

First, we recall some classical results for ROF. In studying this problem, it is
helpful to define the dual norm to \| \cdot \| TV ; for v \in L2(\BbbR 2), define the \ast -norm as

\| v\| \ast = sup

\biggl\{ \int 
\BbbR 2

vudx | \| u\| TV \leq 1

\biggr\} 
.(1.5)

The following theorem, mentioned in section 1, is a slight reformulation of results from
[23] on the solution to (1.1). Specifically, it characterizes the solution as a projection
of 0 onto a ball in the \ast -norm centered at f .
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1117

Table 1
The analogy between (1.1) and (WROF). The decompositions of f and S0 are described in (1.15)

and (1.13), respectively.

ROF WROF

Fidelity \| u - f\| 2
L2(\BbbR 2)

W 2
2 (\rho ,\mu )

Regularity \| u\| TV W1(\rho , \nu )

Projection metric \| u\| 2
L2(\BbbR 2)

D\lambda (\nu , \rho )

Projection set \{ u | \| u - f\| \ast \leq \lambda \} B\lambda (\mu )

Decomposition f = v\lambda + u\lambda S0 = T - 1
\lambda \circ S\lambda 

Theorem 1.1 (Meyer). For all \lambda > 0, (1.1) has a unique solution u\lambda , which can
also be expressed as the solution to

min
\| u - f\| \ast \leq \lambda 

\| u\| 2L2(\BbbR 2).(1.6)

Consequently, if \| f\| \ast \leq \lambda , u\lambda = 0. On the other hand, if \| f\| \ast >\lambda , then \| f - u\lambda \| \ast = \lambda 
and \int 

\BbbR 2

u\lambda (f  - u\lambda )dx= \lambda \| u\| TV .

Remark 1.2. Theorem 1.1 provides a formal statement of some of the results we
have mentioned in section 1. For a statement of further results on ROF, such as
the \ell \infty bound on the wavelet coefficients of f  - u\lambda or the fact that an approximate
solution can be obtained by applying soft thresholding to the wavelet coefficients of
f , see [23, Lemma 10, section 1.14].

Our Theorem 1.3 gives analogous results for (WROF). To make the analogy clear,
Table 1 gives the correspondence between the key concepts. In this case, the measure
\nu is projected with respect to a divergence D\lambda onto a set of measures B\lambda (\mu ). We
will be more precise about D\lambda and B\lambda (\mu ) in (5.8) and (5.6). We will see that these
notions are natural from the point of view of convex analysis; for now, we describe
them in intuitive terms.

A key role will be played by an optimal transport problem that uses a cost function
c2,\lambda : \Omega \times \Omega \rightarrow \BbbR related to the Huber loss function [13] for robust estimation. It is
given by

c2,\lambda (x, y) =

\left\{   
1

2
| x - y| 2, | x - y| \leq \lambda ,

\lambda | x - y|  - \lambda 2

2 , | x - y| \geq \lambda .
(1.7)

This can be viewed as a variation on the standard cost function c2(x, y) =
1
2 | x - y| 2,

except with a certain economy of scale; in particular, the cost of transport at distances
larger than \lambda is discounted. This may be advantageous for image restoration since
this cost is robust to outliers. The relationship between the solution \rho \lambda to (WROF)
and an optimal plan transporting \mu to \nu under the cost c2,\lambda will be made explicit in
Proposition 1.4. We also note that the minimum value of (WROF) is the optimal
transport cost from \mu to \nu for the pointwise cost c2,\lambda ; see Corollary 5.8.

The setB\lambda (\mu ) consists of measures which can be reached from \mu with displacement
less than \lambda by an optimal transport plan for the cost c2,\lambda . In this sense, measures in
B\lambda (\mu ) are indistinguishable from \mu up to scale \lambda .
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1118 TRISTAN MILNE AND ADRIAN NACHMAN

The divergence D\lambda (\nu , \rho ) is nonnegative and is 0 only when \rho = \nu provided \mu is
absolutely continuous with respect to Lebesgue measure, which we denote by \mu \ll \scrL d.
Further, we will show that D\lambda (\nu , \rho ) has an interesting economic interpretation. In
short, assuming that goods are sold to consumers with distribution \nu and purchased
from a manufacturer with distribution \rho , D\lambda (\nu , \rho ) represents the total loss of value
in a supply chain when the transport cost has an economy of scale and consumers
adopt a ``buy local"" policy. More concretely, at the optimal \rho \lambda for (WROF), D\lambda (\nu , \rho \lambda )
measures the amount of transport between \mu and \nu at scale larger than \lambda ; our results
(specifically Theorem 5.6, together with Corollary 5.8) imply\int 

\Omega 2

1

2
(| x - y|  - \lambda )2+d\~\gamma 0 \geq D\lambda (\nu , \rho \lambda )\geq 

\int 
\Omega 2

1

2
(| x - y|  - \lambda )2+d\gamma 0,(1.8)

where \~\gamma 0 and \gamma 0 are optimal plans for transporting \mu to \nu under the costs c2,\lambda and
c2, respectively.

Analogously to Theorem 1.1, our first theorem expresses the solution to (WROF)
as a projection of \nu onto B\lambda (\mu ). We also include an additional result (see (1.11))
which is analogous to the \ell \infty bound on the wavelet coefficients of the residual f  - u\lambda 
mentioned in Remark 1.2.

Theorem 1.3 (main theorem, part 1). Let \Omega be compact and convex with non-
negligible interior, and suppose \mu \ll \scrL d. For all \lambda > 0, (WROF) has a unique solution
\rho \lambda , which can also be expressed as the solution to

min
\rho \in B\lambda (\mu )

D\lambda (\nu , \rho ).(1.9)

Consequently, if \nu \in B\lambda (\mu ), \rho \lambda = \nu . On the other hand, if \nu \not \in B\lambda (\mu ), then there exists
\varphi \lambda a Kantorovich potential for W2(\mu ,\rho \lambda ) satisfying Lip(\varphi \lambda ) = \lambda and\int 

\Omega 

\varphi \lambda (d\nu  - d\rho \lambda ) = \lambda W1(\rho \lambda , \nu ).(1.10)

Finally, the optimal transport map T\lambda for W2(\mu ,\rho \lambda ) satisfies

\| I  - T\lambda \| L\infty (\mu ) \leq \lambda .(1.11)

A more detailed version of this result is given in Theorem 5.6. In sections 4
and 5 we will clarify the strong similarities between Theorems 1.1 and 1.3 by proving
a general theorem for a class of convex optimization problems of the form (4.1) for
which the solution map is a projection. We will show that ROF and (WROF) are
included in this class, so that Theorems 1.1 and 1.3 will follow as particular cases.

More insight into \varphi \lambda and T\lambda from Theorem 1.3 is given in the following
proposition.

Proposition 1.4. Under the notation and assumptions of Theorem 1.3,
1. \varphi \lambda is a solution to

sup
\varphi \in C(\Omega )

\int 
\Omega 

\varphi c2,\lambda d\mu +

\int 
\Omega 

\varphi d\nu ,

where \varphi c2,\lambda (x) = infy\in \Omega c2,\lambda (x, y) - \phi (y),
2. T\lambda , which by definition satisfies (T\lambda )\#\mu = \rho \lambda , is the solution map to (1.4),

and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1119

3. if \gamma 0 is an optimal transport plan for transporting \mu to \nu under the cost c2,\lambda ,
and if (x, y)\in spt(\gamma 0), then

T\lambda (x) =

\left\{     
y, | x - y| \leq \lambda ,\biggl( 
1 - \lambda 

| x - y| 

\biggr) 
x+

\lambda 

| x - y| 
y, | x - y| >\lambda .

(1.12)

Remark 1.5. Proposition 1.4 shows precisely the outcome T\lambda (x0) of restoring
a noisy image x0 by solving (1.4) with the learned regularizer \varphi \lambda . The answer is
determined by \gamma 0; if (x0, y0) \in spt(\gamma 0) is such that | x0  - y0| \leq \lambda , T\lambda completes the
transport from x0 to y0. On the other hand, if | x0  - y0| >\lambda , T\lambda takes a step of size \lambda 
in the direction of y0.

Assuming that \nu is also absolutely continuous, we further establish in the following
theorem that \rho \lambda is obtained by applying soft thresholding to an optimal transport
map from \nu to \mu . Recall that the soft thresholding map is given by s\lambda :\BbbR \rightarrow \BbbR ,

s\lambda (t) := sign(t)(| t|  - \lambda )+.

This provides an analogous result to the soft thresholding property of ROF men-
tioned in Remark 1.2, except that here we obtain the exact solution rather than an
approximate one.

Theorem 1.6 (main theorem, part 2). In addition to the hypotheses of Theorem
1.3, assume that \nu \ll \scrL d. Then

1. \rho \lambda \ll \scrL d,
2. S0 is an optimal transport map for the cost c2,\lambda sending \nu to \mu if and only if

S0 = T - 1
\lambda \circ S\lambda ,(1.13)

where T - 1
\lambda is a Borel map satisfying T - 1

\lambda \circ T\lambda (x) = x \mu almost everywhere,
and S\lambda is an optimal transport map for W1(\nu , \rho \lambda ).

3. For any such S0, the solution \rho \lambda to (WROF) is obtained as \rho \lambda = (S\lambda )\#\nu ,
where

S\lambda (y) := y+ s\lambda (| S0(y) - y| ) S0(y) - y

| S0(y) - y| 
.(1.14)

Remark 1.7. This result gives a further interpretation of \lambda as a scale parameter,
in the sense that the solution \rho \lambda to (WROF) is obtained from \nu by only transporting
mass that moves larger than distance \lambda under S0. The formula (1.13) also deepens
the analogy to ROF. Recall that, writing the residual f  - u\lambda as v\lambda , ROF provides a
decomposition of the image f into ``features"" u\lambda and ``details"" v\lambda , connected by the
formula

f = v\lambda + u\lambda .(1.15)

Equation (1.13) is an optimal transport analogue of this decomposition, the analogy
being obtained by replacing addition with composition. Thus, the transport map S0

is decomposed into S\lambda (which we think of as features in the sense that it only involves
large scale transport) and details T - 1

\lambda which only involve transport less than distance
\lambda (see (1.11)). This decomposition will be analyzed in detail in section 7.
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1120 TRISTAN MILNE AND ADRIAN NACHMAN

1.2. Iterative regularization. We now move to a description of the results
in the second part of the paper and introduce our first iterative procedure. It is in
correspondence with iterated denoising through repeated applications of ROF (see
[4] or section 7.1 of [32]). Here we study iterations of the problem (WROF), where
at each stage \mu is replaced with the previous solution \rho \lambda . When \mu is a distribution
of noisy images and \nu is a distribution of clean ones, this represents the iterative
regularization of \mu . The following proposition is our main result in this direction.

Proposition 1.8. Let \Omega be convex and compact with nonnegligible interior. Let
\mu ,\nu \ll \scrL d, and suppose that (\lambda n)

\infty 
n=0 is a sequence of positive step sizes with

\infty \sum 
n=0

\lambda n =+\infty .(1.16)

Given \mu 0 := \mu , for each n\geq 0 define

\mu n+1 := argmin
\rho \in \scrP (\Omega )

1

2
W 2

2 (\rho ,\mu n) + \lambda nW1(\rho , \nu ).(1.17)

Then

lim
n\rightarrow \infty 

W1(\mu n, \nu ) = 0.(1.18)

We note that due to statement 1 of Theorem 1.6, if \mu and \nu are absolutely con-
tinuous, then the solution to (WROF) is absolutely continuous as well. In connection
with Theorem 1.3, this guarantees that the argmin in (1.17) is unique for each n,
establishing that the sequence \mu n is well defined.

1.3. Multiscale transport and a nonlinear energy decomposition. Our
second iterative process proceeds in the other direction (i.e., ``adding detail"" as op-
posed to denoising) and reveals a richer structure. It is analogous to the hierarchical
image decomposition from [33], and so we first briefly recall those results here. This
approach leverages ROF to decompose an image f into a hierarchical representation
(un)

\infty 
n=1 of features at different scales by setting

un+1 := argmin
u\in L2(\BbbR 2)

\| u - vn\| 2L2(\BbbR 2) + \lambda n+1\| u\| TV , vn = f  - 
n\sum 

i=1

ui,(1.19)

where v0 := f and \lambda n = 2 - n+1\lambda 1. Thus, at each stage the ``detail"" component vn
is broken down into smaller scale features un+1 and details vn+1. The following
theorem2 establishes that (un)

\infty 
n=1 is indeed a decomposition of f and provides a

nonlinear harmonic analysis identity for \| f\| 2L2(\BbbR 2).

Theorem 1.9 (from [26]). For f \in L2(\BbbR 2), the sequence (un)
\infty 
n=1 defined by

(1.19) satisfies

f =

\infty \sum 
n=1

un,(1.20)

2[33] included this result for the cases f \in BV (\BbbR 2) or f in an intermediate space between BV (\BbbR 2)
and L2(\BbbR 2). A proof requiring only f \in L2(\BbbR 2) was obtained in [26].
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1121

where the convergence holds in the strong sense in L2(\BbbR 2). Further,

\| f\| 2L2(\BbbR 2) =

\infty \sum 
n=1

\| un\| 2L2(\BbbR 2) + \lambda n\| un\| TV .(1.21)

More insight on the scale of the decomposition (un)
\infty 
n=1 can be obtained from

Theorem 1.1, which states that \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| f  - 
n\sum 

i=1

ui

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\ast 

\leq \lambda 1
2n
.(1.22)

Thus f and the partial sum
\sum n

i=1 ui agree up to a term of scale at most 2 - n\lambda 1 in
the norm \| \cdot \| \ast . As we have mentioned, according to [23, Lemma 10, section 1.14] this
puts an \ell \infty bound on the wavelet coefficients of f  - 

\sum n
i=1 ui.

By analogy to this approach, our iterative process evolves by leaving \mu untouched
at each step and replacing \nu with the previous iterate, \nu n; the manner in which
this is analogous to (1.19) will be made precise in Remark 8.2. We describe this
procedure as ``adding detail"" since by solving (WROF) with a large value of \lambda we
obtain a modification of \nu which is a ``sketch"" of \mu , in that the two measures are
indistinguishable up to transport at scale \lambda (see Theorem 1.3). By repeating this
process with a smaller value of \lambda we refine this sketch, obtaining at each stage finer
details of \mu . Note also that under the additional assumption \nu \ll \scrL d, Theorem 1.6
implies that we are decomposing a transport map at each stage of this procedure into
``features"" and ``details,"" as determined by the scale of the transport relative to \lambda .
Due to the soft thresholding (see (1.14)), the latter are untouched, to be resolved at
future steps, while the former are partially carried out until the remaining transport
becomes a detail.

Finally, we obtain in (1.25) a decomposition of the total energy W 2
2 (\mu ,\nu ) which

includes all the scales of transport from \nu to \mu via (1.8); this is in correspondence
with the identity (1.21).

The following proposition summarizes the properties of this multiscale algorithm
which are not directly implied by Theorem 1.3 or Theorem 1.6. Note that we do not
require \nu \ll \scrL d for these results.

Theorem 1.10. Let \Omega \subset \BbbR d be compact and convex with a nonnegligible interior.
Take \mu ,\nu \in \scrP (\Omega ) with \mu \ll \scrL d. Suppose \lambda 0 is given. For each n\geq 0, set \lambda n+1 = \lambda n/2
and define

\nu n+1 := argmin
\rho \in \scrP (\Omega )

1

2
W 2

2 (\rho ,\mu ) + \lambda nW1(\rho , \nu n),(1.23)

where \nu 0 := \nu . We have that
1. the sequence \nu n converges to \mu with rate

1

2
W 2

2 (\mu ,\nu n)\leq 2 - 2n+1\lambda 20,(1.24)

and
2. the following energy equality holds:

1

2
W 2

2 (\nu ,\mu ) =

\infty \sum 
n=0

D\lambda n
(\nu n, \nu n+1) + \lambda nW1(\nu n, \nu n+1).(1.25)
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1122 TRISTAN MILNE AND ADRIAN NACHMAN

Remark 1.11. If we add the assumption that \nu is absolutely continuous, we obtain
that the measures \nu n specified in Theorem 1.10 can be written as (S\lambda n - 1 \circ \cdot \cdot \cdot \circ S\lambda 0)\#\nu ;
see Theorem 1.6. In this way, \nu n is built up from a composition of Wasserstein
1 optimal maps applied to \nu . In this sense we are replacing the summation of the
decomposition in (1.20) with composition, as was done for a multiscale decomposition
of diffeomorphisms in [26].

We now describe the organization of the paper. We provide in section 2 a dis-
cussion of related work. Then, in section 3 we elucidate the connection between
(WROF) and the restoration via the learned regularizer technique of [21]. In section
4 we introduce a general class of optimization problems (which includes both ROF
and (WROF)) and prove Theorem 4.5 characterizing their solution maps as projec-
tions. In section 5, we use optimal transport arguments to obtain Theorem 1.3 from
Theorem 4.5. In section 6 we prove that the solution to (WROF) is absolutely con-
tinuous if \mu and \nu are, and in section 7 we prove the existence of an optimal transport
map from \nu to \mu under the Huber cost c2,\lambda , as well as the soft thresholding formula
(1.14). Together, sections 6 and 7 prove Theorem 1.6. Finally, the results for our
iterative procedures (i.e., Proposition 1.8 and Theorem 1.10) are proved in section 8.

2. Discussion and related work. There is a connection between our iterative
regularization procedure defined in Proposition 1.8 and the JKO scheme [15]. The
latter is related to gradient flows in \BbbW 2(\Omega ), which are analyzed in more detail in [1]
(see also [31]). The JKO algorithm produces a sequence of measures \rho n by iteratively
solving an equation of the type

\rho n := argmin
\rho \in \scrP (\Omega )

1

2\lambda 
W 2

2 (\rho n - 1, \rho ) + F (\rho ),(2.1)

where F is a functional. For F (\rho ) =W1(\rho , \nu ), this problem is precisely (WROF). For
general F , by allowing \lambda to go to zero and examining the optimality conditions of
(2.1), one can obtain convergence of an interpolation of the iterates \rho n to a curve of
measures \rho (t). This curve satisfies a PDE which can be viewed as a gradient flow on
F in the metric space \BbbW 2(\Omega ). We expect the PDE that corresponds to our iterative
denoising algorithm to be of the form

\partial t\rho (t) - \nabla \cdot (\rho (t)\nabla u0(t)) = 0,(2.2)

where for all t, u0(t) is a Kantorovich potential for W1(\rho (t), \nu ). We leave the rigorous
derivation to a separate paper. Note that by analogy to ROF such a flow would be
in correspondence with the TV flow in [4].

Other problems of a form similar to (WROF) have been considered in the lit-
erature. A notable example is [6], which finds a smoothed version of a probability
measure \mu while retaining edges by solving

min
\rho \in \scrP (\Omega )

1

2\lambda 
W 2

2 (\mu ,\rho ) + F (\rho ), F (\rho ) :=

\Biggl\{ 
\| \rho \| TV , \rho = \rho (x)dx,

+\infty else.

A related problem is that of [20], which keeps F as the TV-norm of a probability
density but replaces the fidelity term 1

2\lambda W
2
2 (\mu ,\rho ) with the Kantorovich--Rubinstein

norm, a quantity that is closely related to the Wasserstein 1 distance, but is able to
handle measures with different mass. To our knowledge the specific problem given
in (WROF) has not been treated before in the literature. Given that previous works
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1123

have used the TV-norm of a probability density function as a regularity term, we
briefly compare this to our approach of using W1(\rho , \nu ) in the particular case of \nu 
as the normalized Lebesgue measure. One might imagine that for this choice of \nu ,
W1(\rho , \nu ) would serve a role similar to the TV-norm, since it is the minimal amount
of work required to ``smooth out"" \rho to the constant function. This is not the case,
however. Take \Omega = [0,1]2, with \rho = \rho k(x)dx given by

\rho k(x1, x2) = 2(1 + sign(sin(2\pi kx1))).

As k \rightarrow \infty , W1(\rho k, \nu ) \rightarrow 0, and yet \| \rho k\| TV \rightarrow +\infty . So the two regularizers play
different roles.

The field of image restoration with learned regularizers is rapidly developing,
and there are many interesting approaches (e.g., [12, 17, 18, 21, 27]). We focus on
[21] as we found it to be a natural and compelling analogue of ROF. Note that
[21] includes several theoretical results, which focus on issues such as stability of
the reconstruction method and a geometric formula for the Kantorovich potential u0
under certain conditions. Let us also note that [27], being related to iterations of the
method from [21], forms a parallel approach to our iterated regularization discussed
in subsection 1.2.

Last, numerical results for either of the procedures outlined in subsection 1.2 or
subsection 1.3 could be obtained using the dual problem (see subsection 5.1),

sup
\varphi \in \lambda -Lip(\Omega )

\int 
\Omega 

\varphi c2d\mu +

\int 
\Omega 

\varphi d\nu ,(2.3)

where \lambda -Lip(\Omega ) is the set of Lipschitz continuous functions on \Omega with constant \lambda , and
\varphi c2 is the c2 transform of \varphi , defined in Definition 3.1 below. Indeed, Theorem 5.6
shows that the solution \rho \lambda to (WROF) can be realized by applying the solution map
to (1.4) pointwise to \mu , where \varphi \lambda solves (2.3). By analogy to [11], it is natural to
obtain such a \varphi \lambda by parametrizing it with a neural network \varphi w with weights w and
solving the gradient penalty problem

sup
w

\int 
\Omega 

\varphi c2
w (x)d\mu (x) +

\int 
\Omega 

\varphi w(y)d\nu (y) - 
\lambda 

2

\int 
\Omega 

(| \nabla \varphi w|  - \lambda )2+d\sigma (x),

for large \lambda , where \sigma is the sampling distribution from [11]. Optimizing the weights w
requires the computation of the c2-transform of \varphi w. A general and efficient numerical
algorithm to do so has been introduced in [14], a method specific to neural networks
has been given in [22], and a new approach which scales well to high dimensions has
recently been proposed in [3].

3. Links between (WROF) and denoising by adversarial regularization.
In this section we will study the relationship between (WROF) and the denoising
technique of [21]. We will show in subsection 3.1 that the approach of [21] can be
viewed as an explicit Euler discretization of the gradient flow onW1(\cdot , \nu ) in the metric
space \BbbW 2(\Omega ). In contrast, (WROF) can be viewed as an implicit Euler discretization
of the same flow on the same metric space. Moreover, we will establish in subsection
3.2 that these techniques produce identical measures under the assumption that the
minimal displacement of the ray monotone optimal transport map for W1(\mu ,\nu ) (see
[2] or section 3.1 of [30]) is larger than \lambda .

3.1. Explicit and implicit Euler on \BbbW 2(\Omega ). We begin with Lemma 3.2,
which states that (1.2) has a unique solution for almost all x0. This is a standard
result; we include the proof for completeness. We first recall the following definition.
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1124 TRISTAN MILNE AND ADRIAN NACHMAN

Definition 3.1. For a symmetric cost function c : \Omega \times \Omega \rightarrow \BbbR , and \phi \in C(\Omega ), the
function

\phi c(x) = inf
y\in \Omega 

c(x, y) - \phi (y)

is called the c-transform of \phi . If \phi is such that there exists a function \psi with \phi =\psi c,
then one says that \phi is c-concave, written \phi \in c-conc(\Omega ).

Throughout this paper we will make use of the well-known fact that \phi \leq \phi cc, with
equality if and only if \phi is c-concave (see, e.g., [30, Proposition 1.34]).

Lemma 3.2. Let \Omega be compact with boundary of Lebesgue measure zero. Let
u0 : \Omega \rightarrow \BbbR be lower semicontinuous. Then for almost all x\in \Omega , the problem

min
y\in \Omega 

1

2
| x - y| 2 + \lambda u0(y)(3.1)

has a unique solution given by x - \nabla ( - \lambda u0)c2(x).
Proof. Since \Omega is compact and u0 is lower semicontinuous, (3.1) has a solution

for all x \in \Omega and the value of the minimum is finite. Compactness of \Omega also implies
that ( - \lambda u0)c2 is Lipschitz (see, for example, Box 1.8 of [30]), and thus the set of
x0 \in \Omega \setminus \partial \Omega such that \nabla ( - \lambda u0)c2(x0) exists has full Lebesgue measure.

For x0 selected in this way, let y0 \in \Omega solve (3.1). By definition, for all x\in \Omega ,

( - \lambda u0)c2(x)\leq 
1

2
| x - y0| 2 + \lambda u0(y0)(3.2)

with equality at x= x0. Thus, we obtain that the function x \mapsto \rightarrow 1
2 | x - y0| 

2 - ( - \lambda u0)c2(x)
is minimized at x0. We therefore have

y0 = x0  - \nabla ( - \lambda u0)c2(x0).(3.3)

This expresses the minimizer y0 of (3.1) for x = x0 explicitly in terms of x0; the
minimizer is therefore unique.

Lemma 3.2 implies that whenever \mu \ll \scrL d and u0 is continuous, (3.1) has a unique
solution \mu almost everywhere, given by (I  - \nabla ( - \lambda u0)c2)(x0). The following lemma
characterizes the measure we obtain if we push \mu forward under this solution map.

Lemma 3.3. In addition to the assumptions of Lemma 3.2, let \mu \in \scrP (\Omega ) sat-
isfy \mu \ll \scrL d. Let T be a Borel map which coincides with I  - \nabla ( - \lambda u0)c2 , \mu almost
everywhere. Then the measure T\#\mu is the unique solution to the optimization problem

inf
\rho \in \scrP (\Omega )

1

2
W 2

2 (\rho ,\mu ) + \lambda \langle u0, \rho \rangle .(3.4)

Proof. First we note that the map

\rho \mapsto \rightarrow 1

2
W 2

2 (\rho ,\mu ) + \lambda \langle u0, \rho \rangle (3.5)

is strictly convex by Theorem 7.19 from [30], which holds since \mu is absolutely con-
tinuous and \scrL d(\partial \Omega )= 0. Thus, if a solution \rho 0 to (3.4) exists it is unique. A measure
\rho 0 is a minimizer of (3.4) if and only if

0\in \partial 
\biggl( 
1

2
W 2

2 (\cdot , \mu ) + \langle \lambda u0, \cdot \rangle 
\biggr) 
(\rho 0).
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1125

Since \rho \mapsto \rightarrow \langle u0, \rho \rangle is linear, this is equivalent to

 - \lambda u0 \in \partial 
\biggl( 
1

2
W 2

2 (\cdot , \mu )
\biggr) 
(\rho 0).

By Proposition 7.17 of [30], which characterizes the subdifferential of the convex
function \rho \mapsto \rightarrow 1

2W
2
2 (\rho ,\mu ), we conclude that \rho 0 is a minimizer of (3.4) if and only if\int 

\Omega 

( - \lambda u0)c2d\mu +

\int 
\Omega 

( - \lambda u0)d\rho 0 =
1

2
W 2

2 (\mu ,\rho 0).(3.6)

This equality will be proved in in Lemma 5.4 for \rho 0 = T\#\mu , when T is \mu almost
everywhere equal to I  - \nabla ( - \lambda u0)c2 .

Remark 3.4. We note that Lemma 3.3 describes the distribution one obtains by
applying the denoising technique from [21] pointwise to an absolutely continuous
distribution \mu . Indeed, that procedure consists of solving (3.1) given x when u0 is a
Kantorovich potential forW1(\mu ,\nu ). It is interesting to observe that while the denoising
technique of [21] applied to a specific image x0 amounts to an implicit Euler scheme on
a Kantorovich potential u0, Lemma 3.3 shows that the distribution one thus obtains
on all images is characterized as an explicit Euler step on the functional W1(\cdot , \nu ); this
holds since such a u0 is a subgradient of this functional evaluated at \mu . Implicit Euler
discretizations are often better behaved, motivating us to replace (1.3) with (WROF).

3.2. Equivalence of (WROF) and denoising by adversarial regulariza-
tion. Here we will show that that under the assumption that \lambda is less than the
minimal transport length for the ray monotone Wasserstein 1 transport from \mu to
\nu , the solution to (WROF) and the measure obtained via the technique of [21] are
actually the same.

Proposition 3.5. Suppose that \Omega \subset \BbbR d is compact and convex and that \mu ,\nu \in 
\scrP (\Omega ). Suppose that \mu \ll \scrL d and that \lambda > 0 satisfies

ess inf
\mu 

| x - T0(x)| >\lambda ,(3.7)

where T0 is the unique ray monotone optimal transport map for W1(\mu ,\nu ). Take u0 \in 
1-Lip(\Omega ) a Kantorovich potential for W1(\mu ,\nu ), and let T be a Borel map equal to
I  - \nabla ( - \lambda u0)c2 \mu almost everywhere. Then \rho \lambda := T\#\mu is the unique solution to
(WROF).

Proof. Since \Omega is convex we immediately obtain that \scrL d(\partial \Omega )= 0 (see, for exam-
ple, [19]). Thus, \mu \ll \scrL d implies that the functional in (WROF) is strictly convex
(via [30, Theorem 7.19] again), and so the solution to (WROF) is unique if it exists.
Next, we claim that if \rho 0 \in \scrP (\Omega ) and there exists \varphi 0 \in \lambda -Lip(\Omega ) such that\int 

\Omega 

\varphi 0d\nu  - 
\int 
\Omega 

\varphi 0d\rho 0 = \lambda W1(\rho 0, \nu ),(3.8)

and \int 
\Omega 

\varphi c2
0 d\mu +

\int 
\Omega 

\varphi 0d\rho 0 =
1

2
W 2

2 (\mu ,\rho 0),(3.9)

then \rho 0 solves (WROF). Indeed, by Proposition 7.17 from [30], assumptions (3.8) and
(3.9) imply that

 - \varphi 0 \in \partial (\lambda W1(\cdot , \nu )) (\rho 0), \varphi 0 \in \partial 
\biggl( 
1

2
W 2

2 (\cdot , \mu )
\biggr) 
(\rho 0).
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1126 TRISTAN MILNE AND ADRIAN NACHMAN

As such,

0 =\varphi 0  - \varphi 0

\in \partial 
\biggl( 
1

2
W 2

2 (\cdot , \mu )
\biggr) 
(\rho 0) + \partial (\lambda W1(\cdot , \nu )) (\rho 0)

\subset \partial 

\biggl( 
1

2
W 2

2 (\cdot , \mu ) + \lambda W1(\cdot , \nu )
\biggr) 
(\rho 0),

and thus \rho 0 solves (WROF), proving the claim.
Now we assert that these conditions hold for \rho \lambda := T\#\mu and \varphi 0 :=  - \lambda u0. First,

we note that by Proposition 9 from [25] and Lemma 3.2, assumption (3.7) implies
that

I  - \nabla ( - \lambda u0)c2(x) = I  - \lambda \nabla u0(x)(3.10)

\mu almost everywhere. Next, observe that convexity of \Omega , together with (3.7) and
standard properties of Wasserstein 1 Kantorovich potentials, implies that \rho \lambda \in \scrP (\Omega ).
Also, by Theorem 1(i) of [24], u0 is a Kantorovich potential for W1(\rho \lambda , \nu ). As such,
\varphi 0 =  - \lambda u0 satisfies \varphi 0 \in \lambda -Lip(\Omega ) and (3.8). Finally, (3.9) is given by Lemma 5.4,
since \rho \lambda = T\#\mu , and by definition T = I  - ( - \lambda \nabla u0)c2 \mu almost everywhere.

The link between (WROF) and the denoising method of [21] having been estab-
lished, we now analyze solutions of (WROF).

4. A class of minimization problems with solutions given by projec-
tions. In this section we will prove a general theorem about the minimization of a
certain class of convex functions, establishing that the solution map is equivalent to
a projection. We will show that ROF (see (1.1)) and (WROF) are examples of this
class of problems. Thus, we can apply this general theorem to yield Theorem 1.1 and,
with additional arguments from optimal transport, our Theorem 1.3. This puts ROF
and (WROF) within a common framework and provides a fruitful analogy in what
follows.

Let X be a Hausdorff locally convex topological vector space,3 and take X\ast as
its continuous dual; in general we will denote by x and x\ast points in X and X\ast ,
respectively. Let F : X \rightarrow \BbbR be a proper lower semicontinuous convex functional.
Recall that the Legendre dual of such a function is given by F \ast :X\ast \rightarrow \BbbR \cup \{ +\infty \} ,

F \ast (x\ast ) := sup
x\in X

\langle x,x\ast \rangle  - F (x),

with \langle \cdot , \cdot \rangle denoting the duality pairing, and set

dom(F \ast ) = \{ x\ast \in X\ast | F \ast (x\ast )<+\infty \} .

When studying the subdifferential of F \ast we will restrict the dual of X\ast to
X \subset X\ast \ast , i.e.,

\partial F \ast (x\ast ) := \{ x\in X | \forall y\ast \in X\ast , F \ast (y\ast )\geq F \ast (x\ast ) + \langle x, y\ast  - x\ast \rangle \} .

We will focus on F which are in fact continuous, and such that F \ast is a strictly convex
function. Take K \subset X as a closed, convex, nonempty set satisfying K =  - K and

3We will not need this amount of generality for our applications, but we phrase our theorem in
this setting to indicate that nothing more is needed.
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1127

let 1K denote the indicator function of K. For y\ast 0 \in X\ast , consider the optimization
problem

min
x\ast \in X\ast 

F \ast (x\ast ) + 1\ast K(x\ast  - y\ast 0).(4.1)

To motivate the analysis of such problems, we will now indicate that both ROF and
(WROF) are examples.

Example 4.1 (ROF). Take X =L2(\BbbR 2), and F :L2(\BbbR 2)\rightarrow \BbbR as

F (u) =
1

2
\| u\| 2L2(\BbbR 2) + \langle f,u\rangle .

This functional is obviously continuous and convex. It is a simple exercise to show
that its dual is

F \ast (u) =
1

2
\| u - f\| 2L2(\BbbR 2),

which is strictly convex. Take the set K as

K := \{ v \in L2(\BbbR 2) | \| v\| \ast \leq \lambda \} .

It is clear that K is convex, K = - K, and K is closed. It is also not difficult to show
that

1\ast K(u) := sup
v\in K

\int 
\BbbR 2

vudx= \lambda \| u\| TV .

Thus, we see that ROF (i.e., (1.1)) is an example of (4.1), with y\ast 0 = 0.

Example 4.2 (WROF). Assume \Omega \subset \BbbR d is compact and convex (and therefore
\scrL d(\partial \Omega ) = 0). Let X = C(\Omega ) with the topology induced by the sup norm. Then
X\ast =\scrM (\Omega ), the set of finite signed Borel measures on \Omega . Let \mu \in \scrP (\Omega ) with \mu \ll \scrL d,
and take F :C(\Omega )\rightarrow \BbbR as the functional

F (\varphi ) := - 
\int 
\Omega 

\varphi c2d\mu .

It is shown in the proof of Proposition 7.17 of [30] that F defined in this way is convex
and continuous, and that F \ast satisfies, for \rho \in \scrM (\Omega ),

F \ast (\rho ) =

\left\{   
1

2
W 2

2 (\rho ,\mu ), \rho \in \scrP (\Omega ),

+\infty else.

Further, Proposition 7.19 of [30] proves that F \ast is strictly convex when \mu \ll \scrL d.
Now take K = \lambda -Lip(\Omega ). This set is convex and closed in C(\Omega ) and satisfies

K = - K. In addition, for \nu , \rho \in \scrP (\Omega ), we have

1\ast K(\rho  - \nu ) = sup
\varphi \in \lambda -Lip(\Omega )

\langle \varphi ,\rho  - \nu \rangle 

= \lambda W1(\rho , \nu ).

Thus, (WROF) is of the form (4.1).

For our analysis of (4.1), we find it natural to define the divergence D : dom(F \ast )\times 
dom(F \ast )\rightarrow \BbbR \cup \{ +\infty \} by

D(y\ast , x\ast ) := F \ast (y\ast ) - F \ast (x\ast ) - sup
x\in \partial F\ast (x\ast )\cap K

\langle x, y\ast  - x\ast \rangle .(4.2)

The following lemma shows that D has properties similar to those of a Bregman
divergence.
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1128 TRISTAN MILNE AND ADRIAN NACHMAN

Lemma 4.3. For all y\ast , x\ast \in dom(F \ast ), the functional D satisfies

D(y\ast , x\ast )\geq 0.

Moreover, if F \ast is strictly convex, then D(y\ast , x\ast ) = 0 if and only if \partial F \ast (x\ast )\cap K \not = \emptyset 
and y\ast = x\ast .

Proof. The claim D(y\ast , x\ast ) \geq 0 clearly holds if \partial F \ast (x\ast ) \cap K = \emptyset . On the other
hand, if \partial F \ast (x\ast ) \cap K \not = \emptyset the definition of the subdifferential of F \ast confirms that
D(y\ast , x\ast ) \geq 0. Clearly, if \partial F \ast (x\ast ) \cap K \not = \emptyset and y\ast = x\ast we have D(y\ast , x\ast ) = 0. On
the other hand, let F \ast be strictly convex. If D(y\ast , x\ast ) = 0, then take \epsilon > 0 and
x\epsilon \in \partial F \ast (x\ast )\cap K such that

sup
x\in \partial F\ast (x\ast )\cap K

\langle x, y\ast  - x\ast \rangle  - \epsilon \leq \langle x\epsilon , y\ast  - x\ast \rangle .

Since D(y\ast , x\ast ) = 0, we therefore obtain

F \ast (y\ast )\leq F \ast (x\ast ) + \langle x\epsilon , y\ast  - x\ast \rangle + \epsilon .

Hence, for t\in [0,1],

F \ast ((1 - t)x\ast + ty\ast )\leq (1 - t)F \ast (x\ast ) + tF \ast (y\ast )

\leq (1 - t)F \ast (x\ast ) + tF \ast (x\ast )

+ \langle x\epsilon , (1 - t)x\ast + ty\ast  - x\ast \rangle + t\epsilon 

\leq F \ast ((1 - t)x\ast + ty\ast ) + t\epsilon .

Since \epsilon is arbitrary, we obtain that F \ast is affine on the segment [x\ast , y\ast ], a contradiction
to strict convexity unless x\ast = y\ast .

Example 4.4. Let us determine D is in the context of ROF. Recall that in this
case, F \ast (u) = 1

2\| u  - f\| 2L2(\BbbR 2). Then \partial F \ast (u) is a singleton, given by \{ u  - f\} . So
D(v,u) =+\infty unless \| u - f\| \ast \leq \lambda . In that case,

D(v,u) =
1

2
\| v - f\| 2L2(\BbbR 2)  - 

1

2
\| u - f\| 2L2(\BbbR 2)  - \langle u - f, v - u\rangle 

=
1

2
\| u - v\| 2L2(\BbbR 2).

The description of D in the context of (WROF) will be given in subsection 5.1.1.

For a nonempty convex set K \subset X satisfying K =  - K, define the seminorm
\| \cdot \| K :X\rightarrow \BbbR \cup \{ +\infty \} given by

\| x\| K = inf
\Bigl\{ 
t > 0 | x

t
\in K

\Bigr\} 
.

We can now state the main result of this section, which provides conditions under
which the solution to (4.1), if it exists, can be expressed as a projection in the diver-
gence D onto the set of x\ast such that \partial F \ast (x\ast )\cap K \not = \emptyset .

Theorem 4.5. Suppose that X is a Hausdorff locally convex topological vector
space, with X\ast as its dual. Assume F :X\rightarrow \BbbR is continuous and convex, and that its
dual F \ast is strictly convex. Let K \subset X be a closed, convex, nonempty set satisfying
K = - K. Suppose that y\ast 0 \in dom(F \ast ), and the problem

sup
x\in K

\langle x, y\ast 0\rangle  - F (x),(4.3)
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1129

has a solution x0. Then
a. (4.1) has a unique solution x\ast 0 given by the single element of \partial F (x0),
b. x\ast 0 is also a solution to

min
F\ast (x\ast )\cap K \not =\emptyset 

D(y\ast 0 , x
\ast ),(4.4)

and
c. the values of (4.1), (4.3), and F \ast (y\ast 0) - D(y\ast 0 , x

\ast 
0) coincide.

Given b, we obtain the following dichotomy:
1. If \partial F \ast (y\ast 0)\cap K \not = \emptyset , then x\ast 0 = y\ast 0 .
2. Otherwise, x\ast 0 \not = y\ast 0 , and any solution x0 to (4.3) satisfies x0 \in \partial F \ast (x\ast 0),

\| x0\| K = 1, and

\langle x0, y\ast 0  - x\ast 0\rangle = 1\ast K(x\ast 0  - y\ast 0).(4.5)

Remark 4.6. Let the solution map to (4.1) as a function of y\ast 0 be denoted P . Then
the dichotomy presented in Theorem 4.5 confirms that P (P (y\ast 0)) = P (y\ast 0); i.e., P is a
projection.

Before proving Theorem 4.5, we show how it yields Theorem 1.1.

Proof of Theorem 1.1. Recalling Examples 4.1 and 4.4, we have that (1.1) is of
the form (4.1) for y\ast 0 = 0, and

F (u) =
1

2
\| u\| 2L2(\BbbR 2) + \langle f,u\rangle , F \ast (u) =

1

2
\| u - f\| 2L2(\BbbR 2),

K := \{ v \in L2(\BbbR 2) | \| v\| \ast \leq \lambda \} ,

D(v,u) =

\left\{   
1

2
\| u - v\| 2L2(\BbbR 2), \| u - f\| \ast \leq \lambda ,

+\infty , \| u - f\| \ast >\lambda .

The problem (4.3) therefore takes the form

max
\| v\| \ast \leq \lambda 

 - 1

2
\| v\| 2L2(\BbbR 2)  - \langle v, f\rangle .

This problem has a unique solution \~v\lambda since K is convex, nonempty, and closed,
and the function v \mapsto \rightarrow 1

2\| v\| 
2
L2(\BbbR 2) + \langle v, f\rangle is continuous, strictly convex, and coercive

on L2(\BbbR 2). We may therefore apply Theorem 4.5 to obtain that (1.1) has a unique
solution given by

u\lambda = f + \~v\lambda .

Given our calculation for D in Example 4.4, we obtain that u\lambda is also a solution of
the problem in (4.4), which is

min
\| u - f\| \ast \leq \lambda 

\| u\| 2L2(\BbbR 2).

Thus, if \| f\| \ast \leq \lambda , it is clear that u\lambda = 0. On the other hand, \| f\| \ast > \lambda if and only if
\partial F \ast (0)\cap K = \emptyset . Using Theorem 4.5, we obtain that \~v\lambda \in K satisfies \| \~v\lambda \| K = 1, and\int 

\BbbR 2

u\lambda (f  - u\lambda )dx= \langle \~v\lambda , - u\lambda \rangle = \lambda \| u\lambda \| TV .
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1130 TRISTAN MILNE AND ADRIAN NACHMAN

Finally, we compute \| v\| K = \| v\| \ast /\lambda . As such, \| \~v\lambda \| K = 1 is equivalent to \| \~v\lambda \| \ast = \lambda ,
and the proof is complete.

Proof of Theorem 4.5. We start by proving statement a. We note that this result
is obtainable using Theorem 2.7.1 of [35], but we provide an elementary proof here.
Let x0 be a solution to (4.3). Then, equivalently, x0 solves

min
x\in X

F (x) - \langle x, y\ast 0\rangle + 1K(x).

Noting that x \mapsto \rightarrow F (x) - \langle x, y\ast 0\rangle and 1K(x) are both proper convex functions, and that
the former is finite and continuous, we can apply part (iii) of Theorem 2.8.7 from [35]
to conclude that

\partial (F  - \langle \cdot , y\ast 0\rangle + 1K) = \partial F  - \{ y\ast 0\} + \partial 1K .(4.6)

Since F \ast is strictly convex, \partial F (x0) contains at most one element. Further, since
F is convex, proper, and continuous, Theorem 2.4.9 from [35] shows that \partial F (x) is
nonempty for all x \in X, and thus \partial F (x) contains a unique element for all x \in X.
Since x0 is a solution of (4.3), the unique element x\ast 0 \in \partial F (x0) satisfies

0\in x\ast 0  - y\ast 0 + \partial 1K(x0).

Since K = - K, we have \partial 1K( - x0) = - \partial 1K(x0). Thus,

x\ast 0  - y\ast 0 \in \partial 1K( - x0).(4.7)

Next, since H :X\rightarrow \BbbR \cup \{ +\infty \} is proper, convex, and lower semicontinuous, then for
all x such that H(x)<+\infty we have the well-known fact that4

x\ast \in \partial H(x)\leftrightarrow x\in \partial H\ast (x\ast )\leftrightarrow H(x) +H\ast (x\ast ) = \langle x,x\ast \rangle .(4.8)

We apply this to H = 1K , which is proper because K is nonempty, convex because K
is convex, and lower semicontinuous because K is closed. Thus, (4.7) yields

 - x0 \in \partial 1\ast K(x\ast 0  - y\ast 0).

It is an elementary fact that (\partial H(\cdot  - y\ast )) (x\ast ) = \partial H(x\ast  - y\ast ). Recalling that x\ast 0 \in 
\partial F (x0) and using (4.8) again, we get

0\in \partial F \ast (x\ast 0) + \partial 1\ast K(x\ast 0  - y\ast 0)\subset \partial (F \ast + 1\ast K(\cdot  - y\ast 0)) (x
\ast 
0),

which confirms that x\ast 0 is a minimizer of (4.1). By the assumed strict convexity of F \ast ,
x\ast 0 is the unique minimizer. We have shown that if x0 solves (4.3), then the unique
x\ast 0 \in \partial F (x0) solves (4.1), which proves statement a.

Statements b and c will be proven together. Regarding the values of (4.1) and
(4.3), note that by definition of the Legendre dual, for all x\ast \in X\ast and x\in K,

F \ast (x\ast ) + 1\ast K(x\ast  - y\ast 0)\geq \langle x,x\ast \rangle  - F (x) + \langle  - x,x\ast  - y\ast 0\rangle 
= \langle x, y\ast 0\rangle  - F (x).

Hence,

inf
x\ast \in X\ast 

F \ast (x\ast ) + 1\ast K(x\ast  - y\ast 0)\geq sup
x\in K

\langle x, y\ast 0\rangle  - F (x).

4See, for example, Theorem 2.4.4 from [35] for a proof of this in our setting.
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1131

On the other hand, for x0 optimal in (4.3) and x\ast 0 \in \partial F (x0) optimal in (4.1), (4.8)
implies

F \ast (x\ast 0) + 1\ast K(x\ast 0  - y\ast 0) = \langle x0, x\ast 0\rangle  - F (x0) + \langle  - x0, x\ast 0  - y\ast 0\rangle 
= \langle x0, y\ast 0\rangle  - F (x0).

This establishes that the values of (4.1) and (4.3) are the same.
Next, we turn to (4.4). Invoking (4.8) again, and recalling that \partial F (x) contains a

unique element for all x \in X, we obtain that for each x \in K, there exists x\ast \in \partial F (x)
such that \partial F \ast (x\ast )\cap K \not = \emptyset . As such,

\langle x, y\ast 0\rangle  - F (x) = \langle x, y\ast 0  - x\ast \rangle + F \ast (x\ast )

= F \ast (y\ast 0) - (F \ast (y\ast 0) - F \ast (x\ast ) - \langle x, y\ast 0  - x\ast \rangle )
\leq F \ast (y\ast 0) - (F \ast (y\ast 0) - F \ast (x\ast ) - sup

z\in \partial F\ast (x\ast )\cap K

\langle z, y\ast 0  - x\ast \rangle .

Thus,

sup
x\in K

\langle x, y\ast 0\rangle  - F (x)\leq F (y\ast 0) - inf
x\ast \in X\ast 

D(y\ast 0 , x
\ast ).(4.9)

On the other hand, for x\ast \in X\ast with \partial F \ast (x\ast ) \cap K \not = \emptyset , let \epsilon > 0 and take x \in 
\partial F \ast (x\ast )\cap K satisfying

sup
z\in \partial F\ast (x\ast )\cap K

\langle z, y\ast 0  - x\ast \rangle  - \epsilon \leq \langle x, y\ast 0  - x\ast \rangle .

Then

F (y\ast 0) - D(y\ast 0 , x
\ast )\leq F (y\ast 0) - (F \ast (y\ast 0) - F \ast (x\ast ) - \langle x, y\ast 0  - x\ast \rangle  - \epsilon )

= \langle x, y\ast 0\rangle  - F (x) + \epsilon .

Hence,

sup
x\in K

\langle x, y\ast 0\rangle  - F (x) + \epsilon \geq F (y\ast 0) - inf
x\ast \in X\ast 

D(y\ast 0 , x
\ast ).

Since \epsilon is arbitrary, we obtain equality of the values of F (y\ast 0)  - infx\ast D(y\ast 0 , x
\ast ) and

(4.3). Finally, if x0 solves (4.3), then we know that x\ast 0 \in \partial F (x0) solves (4.1). We also
have

sup
x\in K

\langle x, y\ast 0\rangle  - F (x) = \langle x0, y\ast 0\rangle  - F (x0)

\leq F \ast (y\ast 0) - D(y\ast 0 , x
\ast 
0)

\leq F \ast (y\ast 0) - inf
x\ast \in dom(F\ast )

D(y\ast 0 , x
\ast )

= sup
x\in K

\langle x, y\ast 0\rangle  - F (x).

Equality of the first expression and the last mean that each inequality is an equality;
thus x\ast 0 solves (4.4) as claimed, which completes the proof of statements b and c.

We now address the dichotomy. If \partial F \ast (y\ast 0)\cap K \not = \emptyset , then by Lemma 4.3 the only
minimizer of (4.4) is y\ast 0 . So suppose \partial F \ast (y\ast 0) \cap K = \emptyset . Then it is clear that x\ast 0 \not = y\ast 0 ,
since D(y\ast 0 , x

\ast 
0) < +\infty , and hence \partial F \ast (x\ast 0) \cap K \not = \emptyset . For any solution x0 to (4.3),
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1132 TRISTAN MILNE AND ADRIAN NACHMAN

we obtain x0 \in \partial F \ast (x\ast 0) by (4.8). We also have (4.7), and thus via the last equality
of (4.8),

\langle  - x0, x\ast 0  - y\ast 0\rangle = 1\ast K(x\ast 0  - y\ast 0),

which is (4.5). Since x0 \in K, we have \| x0\| K \leq 1. On the other hand, if \| x0\| K < 1,
then since x\ast 0 \not = y\ast 0 there is no possibility of (4.5) holding.

5. Proof of Theorem 1.3. In subsection 5.1 we will demonstrate that the hy-
potheses of Theorem 4.5 hold for (WROF). In addition, we will describe the divergence
D in this context. In subsection 5.2 we will use these preliminaries to complete the
proof of Theorem 1.3.

5.1. Preliminaries. Recall that in the context of (WROF), K = \lambda -Lip(\Omega ), and
F :C(\Omega )\rightarrow \BbbR given by

F (\varphi ) = - 
\int 
\Omega 

\varphi c2d\mu .

Wementioned in Example 4.2 that F defined in this way is convex and continuous, and
that F \ast is strictly convex provided \mu \ll \scrL d and \scrL d(\partial \Omega )= 0. Further, K = \lambda -Lip(\Omega ) is
closed, convex, and nonempty and satisfies K = - K. The only remaining hypothesis
of Theorem 4.5 to verify is that (4.3) has a solution. In this setting (4.3) takes the
form

sup
\varphi \in \lambda -Lip(\Omega )

\int 
\Omega 

\varphi c2d\mu +

\int 
\Omega 

\varphi d\nu .(5.1)

The existence of a solution could be proved by standard arguments, but we will do so
by rewriting (5.1) as an unconstrained problem in terms of the Huber cost function
c2,\lambda (see (1.7) for the definition); this will be useful to us later.

For \mu ,\rho \in \scrP (\Omega ), let \scrI c2,\lambda (\mu ,\rho ) be the transport cost, i.e.,

\scrI c2,\lambda (\mu ,\rho ) := inf
\gamma \in \Pi (\mu ,\rho )

\int 
\Omega \times \Omega 

c2,\lambda (x, y)d\gamma (x, y),

where \Pi (\mu ,\rho ) is the set of probability distributions on \Omega \times \Omega with marginal distribu-
tions given by \mu and \rho . Since c2(x, y) \geq c2,\lambda (x, y), we have 1

2W
2
2 (\mu ,\rho ) \geq \scrI c2,\lambda (\mu ,\rho ).

We now prove an easy fact about the c2,\lambda -transform.

Lemma 5.1. If \Omega is convex and \varphi \in \lambda -Lip(\Omega ), then

\varphi c2,\lambda (x) =\varphi c2(x) \forall x\in \Omega ,(5.2)

where, recall,

\varphi c2,\lambda (x) := inf
y\in \Omega 

c2,\lambda (x, y) - \varphi (y).

Proof. Let B\lambda (x) be the closed Euclidean ball of radius \lambda centered at x. We claim
that \varphi \in \lambda -Lip(\Omega ) implies that for all x\in \Omega ,

\varphi c2(x) = inf
y\in \Omega \cap B\lambda (x)

c2(x, y) - \varphi (y).(5.3)
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1133

Indeed, for y \in \Omega \setminus B\lambda (x), let z be the projection of y onto B\lambda (x) in the Euclidean
norm; note that z \in \Omega by convexity of \Omega . Since c2 is convex and differentiable in its
second variable, we have

c2(x, y)\geq c2(x, z) + \langle z  - x, y - z\rangle = c2(x, z) + \lambda | z  - y| ,

so

c2(x, y) - \varphi (y)\geq c2(x, z) + \lambda | z  - y|  - \varphi (y)\geq c2(x, z) - \varphi (z).

This proves (5.3). We can also prove, by a nearly identical argument, that the
infimum in

\varphi c2,\lambda (x) = inf
y\in \Omega 

c2,\lambda (x, y) - \varphi (y)

can also be restricted to B\lambda (x) \cap \Omega . Since c2,\lambda (x, y) = c2(x, y) when | x - y| \leq \lambda , the
conclusion follows.

An immediate consequence of the preceding lemma is that we can rewrite (5.1)
as an unconstrained problem in terms of the cost c2,\lambda .

Lemma 5.2. When \Omega is convex, the problems (5.1) and

sup
\varphi \in C(\Omega )

\int 
\Omega 

\varphi c2,\lambda d\mu +

\int 
\Omega 

\varphi d\nu (5.4)

are equivalent; they have the same value, a solution to (5.1) is a solution to (5.4), and
a c2,\lambda -concave solution to (5.4) is a solution to (5.1).

Proof. Let \varphi \in C(\Omega ) be a candidate for maximizing (5.4). Without loss of gener-
ality we may take \varphi c2,\lambda -concave, and since c2,\lambda (x, y) = h(| x - y| ) for h \in \lambda -Lip(\BbbR +),
we obtain \varphi \in \lambda -Lip(\Omega ) as well. So (5.4) can be rewritten as

sup
\varphi \in \lambda -Lip(\Omega )

\int 
\Omega 

\varphi c2,\lambda d\mu +

\int 
\Omega 

\varphi d\nu .

We have already shown in Lemma 5.1 that when \Omega is convex and \varphi \in \lambda -Lip(\Omega ),
\varphi c2,\lambda =\varphi c2 . This establishes the equivalence of the problems.

The existence of a solution to (5.1) now follows from the existence of a Kantorovich
potential for the transport problem \scrI c2,\lambda (\mu ,\nu ).

Lemma 5.3. Let \Omega \subset \BbbR n be compact and convex. For \mu ,\nu \in \scrP (\Omega ), problem (5.1)
has a solution.

Proof. Since the cost c2,\lambda is uniformly continuous and bounded on \Omega \times \Omega , we may
use Theorem 1.39 of [30] to conclude that there exists a c2,\lambda -concave function \varphi \lambda such
that

\scrI c2,\lambda (\mu ,\nu ) = sup
\varphi \in C(\Omega )

\int 
\Omega 

\varphi c2,\lambda d\mu +

\int 
\Omega 

\varphi d\nu 

=

\int 
\Omega 

\varphi 
c2,\lambda 
\lambda d\mu +

\int 
\Omega 

\varphi \lambda d\nu .

By Lemma 5.2, \varphi \lambda is a solution of (5.1).

The hypotheses of Theorem 4.5 being validated, we may apply it to (WROF),
and we will do so in subsection 5.2. As a preliminary step, however, it will be helpful
to specify the subdifferential of F , since the minimizer of (WROF) will be given by
\partial F (\varphi \lambda ) if \varphi \lambda solves (5.1).
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1134 TRISTAN MILNE AND ADRIAN NACHMAN

Lemma 5.4. For \varphi \in C(\Omega ), \partial F (\varphi ) is nonempty, and

\partial F (\varphi ) =

\biggl\{ 
\rho \in \scrP (\Omega ) | 

\int 
\Omega 

\varphi c2d\mu +

\int 
\Omega 

\varphi d\rho =
1

2
W 2

2 (\rho ,\mu )

\biggr\} 
.(5.5)

Further, if \partial \Omega has Lebesgue measure 0, \mu \ll \scrL d, and T : \Omega \rightarrow \Omega is any Borel map \mu 
almost everywhere equal to I  - \nabla \varphi c2 , then

\partial F (\varphi ) = \{ T\#\mu \} .

Proof. Since F is convex, proper, and continuous everywhere, Theorem 2.4.9
from [35] shows that \partial F (\varphi ) is nonempty for all \varphi . Since F is a convex, proper, and
continuous function, we invoke (4.8) to state that

\rho \in \partial F (\varphi )\leftrightarrow \varphi \in \partial F \ast (\rho ) = \partial 

\biggl( 
1

2
W 2

2 (\cdot , \mu )
\biggr) 
(\rho ).

Via Proposition 7.17 from [30], we obtain (5.5).
Thus, \rho \in \partial F (\varphi ) means that \varphi c2 is a Kantorovich potential forW2(\mu ,\rho ). Suppose

in addition \partial \Omega has Lebesgue measure 0 and \mu \ll \scrL d. The characterization of the
optimal transport map for the cost c2(x, y) =

1
2 | x - y| 2 in Theorem 1.17 of [30] then

confirms that \rho = T\#\mu for any T \mu almost everywhere equal to I  - \nabla \varphi c2 .

It will also be useful to study the divergence D in the context of (WROF), specif-
ically where it is finite. This is the content of the next subsection.

5.1.1. The divergence \bfitD in the context of (WROF). Here we will provide
a characterization of the set of measures \rho such that D(\nu , \rho ) < +\infty . We will also
provide an economic interpretation of D on this set.

First, set B\lambda (\mu ) as the set of all measures \rho that are reachable from \mu under an
optimal plan for the cost c2,\lambda such that no point moves more than distance \lambda ,

B\lambda (\mu ) = \{ \rho \in \scrP (\Omega ) | \exists \gamma 0 optimal for \scrI c2,\lambda (\mu ,\rho ) s.t. spt(\gamma 0)\subset \{ | x - y| \leq \lambda \} \} .(5.6)

We consider B\lambda (\mu ) because the following lemma shows that it is exactly the set of
\rho \in \scrP (\Omega ) such that \partial F \ast (\rho )\cap K \not = \emptyset , and thus D(\nu , \rho )<+\infty . In particular it is the set
of measures \rho such that W 2

2 (\rho ,\mu ) has an \lambda -Lipschitz Kantorovich potential. We also
provide a third characterization of B\lambda (\mu ) as the set of all measures which are close
enough to \mu that there are no savings to be had using the discounted cost c2,\lambda .

Lemma 5.5. Let \Omega be compact and convex. Then the following are equivalent:
1. \rho \in B\lambda (\mu ),
2. \partial ( 12W

2
2 (\cdot , \mu ))(\rho )\cap \lambda -Lip(\Omega ) \not = \emptyset , and

3. 1
2W

2
2 (\mu ,\rho ) = \scrI c2,\lambda (\mu ,\rho ).

Proof. We will proceed by proving 1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1. Let \rho \in B\lambda (\mu ). Let \varphi be a
c2,\lambda -concave function such that

\scrI c2,\lambda (\mu ,\rho ) =
\int 
\Omega 

\varphi c2,\lambda d\mu +

\int 
\Omega 

\varphi d\rho .
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1135

Since \varphi is c2,\lambda -concave we obtain that \varphi \in \lambda -Lip(\Omega ). For \gamma 0 the optimal plan trans-
porting \mu to \rho from the definition of B\lambda (\mu ), we have

1

2
W 2

2 (\mu ,\rho )\leq 
1

2

\int 
\Omega \times \Omega 

| x - y| 2d\gamma 0

=

\int 
\Omega \times \Omega 

c2,\lambda (x, y)d\gamma 0

=

\int 
\Omega 

\varphi c2,\lambda d\mu +

\int 
\Omega 

\varphi d\rho 

=

\int 
\Omega 

\varphi c2d\mu +

\int 
\Omega 

\varphi d\rho 

\leq 1

2
W 2

2 (\mu ,\rho ).

In the second to last line we have used Lemma 5.1. Equality of the first and last terms
means we have equality throughout, and thus \varphi \in \partial ( 12W

2
2 (\cdot , \mu ))(\rho )\cap \lambda -Lip(\Omega ).

Second, if \rho \in \scrP (\Omega ) is such that there exists \varphi satisfying

\varphi \in \partial 
\biggl( 
1

2
W 2

2 (\cdot , \mu )
\biggr) 
(\rho )\cap \lambda -Lip(\Omega ),

then, using Lemma 5.1,

1

2
W 2

2 (\mu ,\rho ) =

\int 
\Omega 

\varphi c2,\lambda d\mu +

\int 
\Omega 

\varphi d\rho 

\leq \scrI c2,\lambda (\mu ,\rho ).

Since 1
2W

2
2 (\mu ,\rho )\geq \scrI c2,\lambda (\mu ,\rho ) in general, we have 1

2W
2
2 (\mu ,\rho ) = \scrI c2,\lambda (\mu ,\rho ).

Finally, suppose 1
2W

2
2 (\mu ,\rho ) = \scrI c2,\lambda (\mu ,\rho ). Since \Omega is compact, there exists an

optimal plan \gamma 0 \in \Pi (\mu ,\rho ) for W2(\mu ,\rho ). We compute

1

2
W 2

2 (\mu ,\rho ) =

\int 
\Omega \times \Omega 

c2(x, y)d\gamma 0(x, y)

\geq 
\int 
\Omega \times \Omega 

c2,\lambda (x, y)d\gamma 0(x, y)(5.7)

\geq \scrI c2,\lambda (\mu ,\rho )

=
1

2
W 2

2 (\mu ,\rho ).

Equality of the first and last terms means we have equality throughout. This indicates
that \gamma 0 is optimal for \scrI c2,\lambda (\mu ,\rho ), and

\gamma 0(\{ (x, y)\in \Omega | | x - y| >\lambda \} ) = 0,

otherwise the inequality in (5.7) would be strict. Thus, \rho \in B\lambda (\mu ).

In the context of (WROF), the divergence D previously defined in (4.2) takes the
following form:

D\lambda (\nu , \rho ) =
1

2
W 2

2 (\nu ,\mu ) - 
1

2
W 2

2 (\rho ,\mu )

 - sup

\biggl\{ 
\langle \varphi ,\nu  - \rho \rangle | \varphi \in \partial 

\biggl( 
1

2
W 2

2 (\cdot , \mu )
\biggr) 
(\rho )\cap \lambda -Lip(\Omega )

\biggr\} 
,(5.8)
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1136 TRISTAN MILNE AND ADRIAN NACHMAN

with \mu \in \scrP (\Omega ) a fixed reference measure. Here we have introduced the notation D\lambda 

to make the dependence of D on the scale \lambda explicit.
We now detail the economic interpretation of (5.8) that we mentioned in subsec-

tion 1.1. Here we assume that goods are manufactured with distribution \mu , purchased
from the manufacturer with distribution \rho and sold to consumers with distribution \nu .
In this setting D\lambda (\nu , \rho ) represents the total loss of value in a supply chain when the
transport cost has an economy of scale and consumers adopt a ``buy local"" policy.

Indeed if anyone can move goods from x to y for a transport cost of c2,\lambda (x, y), it
is well known5 that the maximum profit obtainable for transporting \mu to \rho while still
being competitive with this global shipping rate is \scrI c2,\lambda (\mu ,\rho ), and that a potential

\varphi \in \partial 
\bigl( 
\scrI c2,\lambda (\cdot , \mu )

\bigr) 
(\rho )

represents an optimal sale price as a function of location. We suppose that instead
of shipping directly to consumers, the manufacturer sells to a retailer, who purchases
product with distribution \rho and sells with distribution \nu , both at price \varphi . The profits
obtained by the retailer are therefore

\langle \varphi ,\nu  - \rho \rangle .

Given \mu and \rho , there may be several optimal prices \varphi , and since all of them result in the
same benefit for the manufacturer, they allow the retailer to choose one that maximizes
their profit. However, the manufacturer specifies that \varphi \in \lambda -Lip(\Omega ); otherwise the
retailer may be able to exploit an arbitrage against the global shipping cost c2,\lambda . The
profits of the retailer are then

sup\{ \langle \varphi ,\nu  - \rho \rangle | \varphi \in \partial 
\bigl( 
\scrI c2,\lambda (\cdot , \mu )

\bigr) 
(\rho )\cap \lambda -Lip(\Omega )\} .

We now suppose that the consumers impose a ``buy local"" policy, in the sense that
they will not tolerate goods being shipped more than distance \lambda to retailers. The
retailer must modify \rho to compensate for this, and by definition the only admissible
distributions are those in B\lambda (\mu ). If \rho \in B\lambda (\mu ), however, Lemmas 5.1 and 5.5 show
that

\varphi \in \partial 
\bigl( 
\scrI c2,\lambda (\cdot , \mu )

\bigr) 
(\rho )\cap \lambda -Lip(\Omega )\leftrightarrow \varphi \in \partial 

\biggl( 
1

2
W 2

2 (\cdot , \mu )
\biggr) 
(\rho )\cap \lambda -Lip(\Omega ).

Since \scrI c2,\lambda (\mu ,\rho ) = 1
2W

2
2 (\mu ,\rho ) for \rho \in B\lambda (\mu ), the total profits for both manufacturer

and retailer are

1

2
W 2

2 (\mu ,\rho ) + sup

\biggl\{ 
\langle \varphi ,\nu  - \rho \rangle | \varphi \in \partial 

\biggl( 
1

2
W 2

2 (\cdot , \mu )
\biggr) 
(\rho )\cap \lambda -Lip(\Omega )

\biggr\} 
.

Subtracting this from the baseline 1
2W

2
2 (\mu ,\nu ), we see that D\lambda (\nu , \rho ) is indeed the total

loss of value when a product is purchased by retailers at distribution \rho and sold at
distribution \nu under a buy local policy for consumers and when transportation over
scale \lambda is discounted.

5.2. Applying Theorem 4.5 to (WROF). With B\lambda (\mu ) and D\lambda defined, we
can finally apply Theorem 4.5 to characterize \rho \lambda , the unique minimizer of (WROF),
as a projection of \nu onto B\lambda (\mu ) with respect to the divergence D\lambda . The following
result is a more detailed version of Theorem 1.3 from section 1.

5See, for example, [34, p. 65].
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1137

Theorem 5.6. Let \Omega be compact and convex with nonnegligible interior, and
suppose \mu \ll \scrL d. Then

a. (WROF) has a unique solution \rho \lambda = (T\lambda )\#\mu , where T\lambda = I  - \nabla \varphi c2
\lambda almost

everywhere and \varphi \lambda solves (5.1),
b. \rho \lambda is also a solution to

min
\rho \in B\lambda (\mu )

D\lambda (\nu , \rho ),(5.9)

and
c. the values of (WROF), (5.1), and 1

2W
2
2 (\nu ,\mu ) - D\lambda (\nu , \rho \lambda ) coincide.

Given statement b, we have the following dichotomy.
1. If \nu \in B\lambda (\mu ), then \rho \lambda = \nu .
2. Otherwise, \rho \lambda \not = \nu . Furthermore, any solution \varphi \lambda to (5.1) satisfies \varphi \lambda \in 
\partial ( 12W

2
2 (\cdot , \mu ))(\rho \lambda ), Lip(\varphi \lambda ) = \lambda , and

\langle \varphi \lambda , \nu  - \rho \lambda \rangle = \lambda W1(\rho \lambda , \nu ).(5.10)

Finally, T\lambda is the unique optimal transport map for W2(\mu ,\rho \lambda ) and satisfies (1.11).

Remark 5.7. This result, together with Lemma 5.2, provides a proof of statement
1 of Proposition 1.4. Moreover, recalling Lemma 3.2, we observe that I - \nabla \varphi c2

0 is the
solution map to (1.4). Thus, Theorem 5.6 also proves statement 2 of Proposition 1.4.

Proof. We have already described how F (\varphi ) =  - 
\int 
\Omega 
\varphi c2d\mu and K = \lambda -Lip(\Omega )

satisfy the hypotheses of Theorem 4.5; in particular, \mu \ll \scrL d and \scrL d(\partial \Omega )= 0 guarantee
strict convexity of F \ast . Further, Lemma 5.3 guarantees the existence of a solution
to (5.1). Statements a, b, and c then follow immediately from Theorem 4.5 and
Lemma 5.4.

Since we have shown that \rho \in B\lambda (\mu ) is equivalent to \partial F \ast (\rho ) \cap K \not = \emptyset in Lemma
5.5, we see that the condition of the dichotomies in this proposition and Theorem
4.5 correspond. The only part of statements 1 and 2 in Theorem 5.6 that is not
an immediate implication of Theorem 4.5 is that Lip(\varphi \lambda ) = \lambda , but this comes from
determining that \| \varphi \lambda \| K = Lip(\varphi \lambda )/\lambda . Further, T\lambda is optimal for W2(\mu ,\rho \lambda ) since
T\lambda = I  - \nabla \varphi c2

\lambda almost everywhere and \varphi \lambda \in \partial ( 12W
2
2 (\cdot , \mu ))(\rho \lambda ). Finally, (1.11) holds

since Lip(\varphi c2
\lambda )\leq \lambda by Lemma 5.1.

This result, together with Lemma 5.2, furnishes an additional description of the
value of (WROF) which is useful in proving the interpretation of D\lambda (\nu , \rho \lambda ) in (1.8).

Corollary 5.8. Under the hypotheses of Theorem 5.6, the minimal value of
(WROF) is equal to

\scrI c2,\lambda (\mu ,\nu ) = inf

\biggl\{ \int 
\Omega \times \Omega 

c2,\lambda (x, y)d\gamma | \gamma \in \Pi (\mu ,\nu )

\biggr\} 
.(5.11)

Proof. Observe that (5.4) is a standard Kantorovich potential problem, and thus
via Theorem 5.6, Lemma 5.2, and Theorem 1.39 of [30] we get that the value of
(WROF) coincides with (5.11).

We now turn to the proof of Theorem 1.6. A crucial role is played by the absolute
continuity of \rho \lambda , and the proof of this property is the focus of the following section.

6. Absolute continuity of \bfitrho \bfitlambda . The following proposition provides conditions
under which \rho \lambda is guaranteed to be absolutely continuous, and proves statement 1
from Theorem 1.6.
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1138 TRISTAN MILNE AND ADRIAN NACHMAN

Proposition 6.1. Suppose that \Omega \subset \BbbR d is compact and convex, with a nonempty
interior. If \mu and \nu are absolutely continuous with respect to Lebesgue measure, then
\rho \lambda , the unique solution to (WROF), is absolutely continuous as well.

The rest of this section is devoted to proving Proposition 6.1, and the plan is as
follows. First, in subsection 6.1 we use the alternate expression for the dual problem
(5.1) furnished by (5.4) to obtain a better understanding of how \rho \lambda relates to \mu and
\nu . Namely, there is an optimal transport plan \gamma 0 for (5.11), and \rho \lambda is obtained
by completing all transport in this plan that moves less than distance \lambda , as well as
progressing all transport that moves more than distance \lambda as much as possible while
retaining \rho \lambda \in B\lambda (\mu ). We use this understanding to decompose \rho \lambda into a sum of two
measures, and by proving that each of these is absolutely continuous, we will obtain
that \rho \lambda is absolutely continuous as well.

6.1. Consequences of Lemma 5.2 for a minimizer of (WROF). Recall
Corollary 5.8, which says that the value of (WROF) coincides with that of (5.11).
By Theorem 1.4 of [30], an optimal plan for the latter exists since \Omega is compact;
throughout this section we will refer to this plan by the notation \gamma 0. Let us also fix
\varphi \lambda as a solution of (5.1) which is c2,\lambda -concave; such a \varphi \lambda exists by Lemma 5.2. The
following simple result characterizes \nabla \varphi c2

\lambda , and thus the solution of (WROF) (see
Theorem 5.6), in terms of \gamma 0.

Lemma 6.2. Let \Omega be compact and convex with nonnegligible interior. Let \gamma 0 be
optimal in (5.11). If (x, y) \in spt(\gamma 0), with x in the interior of \Omega and a differentiable
point of \varphi c2

\lambda , then

\nabla \varphi c2
\lambda (x) =

\left\{     
x - y, | x - y| \leq \lambda ,

\lambda 
x - y

| x - y| 
, | x - y| \geq \lambda .

Thus, there is at most one y \in B\lambda (x) such that (x, y) \in spt(\gamma 0) and in that case
x - \nabla \varphi c2

0 (x) = y.

Proof. Since \varphi \lambda solves (5.1), Lemma 5.2 implies that \varphi \lambda also solves (5.4), and
Lemma 5.1 gives that \varphi c2 =\varphi c2,\lambda . Since \varphi \lambda is optimal potential in (5.4) we have

\varphi c2
\lambda (x) +\varphi \lambda (y)\leq c2,\lambda (x, y)

with equality on the support of \gamma 0. Thus, if (x, y)\in spt(\gamma 0), the minimum of

inf
z
c2,\lambda (z, y) - \varphi c2

\lambda (z)

is obtained at x. If x is interior to \Omega and a differentiable point of \varphi c2
\lambda , then

0 =\nabla xc2,\lambda (x, y) - \nabla \varphi c2
\lambda (x).

Computing the derivative of c2,\lambda , we obtain the claim.

We note that since T\lambda (x) = x - \nabla \varphi c2
\lambda (x) almost everywhere, Lemma 6.2 proves

statement 3 of Proposition 1.4.

6.2. A decomposition of \bfitrho \bfitlambda . Define the Borel measures

\mu a = (\pi x)\#\gamma 0| \{ | x - y| \leq \lambda \} , \mu b = (\pi x)\#\gamma 0| \{ | x - y| >\lambda \} ,(6.1)
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1139

where \pi x and \pi y are the canonical projections. Let T\lambda be a Borel map which is almost
everywhere equal to I - \nabla \varphi c2

\lambda . Recalling that T\lambda is optimal for the transport between
\mu and \rho \lambda for the cost c2 (see Theorem 5.6), define

\rho a\lambda = (T\lambda )\#\mu 
a, \rho b\lambda = (T\lambda )\#\mu 

b.(6.2)

It is clear that \mu = \mu a+\mu b, and from this we obtain \rho \lambda = \rho a\lambda + \rho 
b
\lambda . We will prove that

\rho \lambda \ll \scrL d by showing the same for \rho a\lambda and \rho b\lambda .
It is easier to prove that \rho a\lambda \ll \scrL d, and that is the content of the following lemma.

We will actually prove the stronger result that \rho a\lambda (E) \leq \nu (E) for all Borel E. This
inequality should be expected given the discussion following Lemma 6.2, which says
that the map I  - \nabla \varphi c2

\lambda completes all transport in \gamma 0 that moves less than distance
\lambda . Since the mass that moves less than distance \lambda under \gamma 0 is precisely \mu a, and \gamma 0
transports \mu to \nu , that \rho a\lambda \leq \nu is not surprising.

Lemma 6.3. If \mu \ll \scrL d, then for all E \subset \Omega Borel we have

\rho a\lambda (E)\leq \nu (E).(6.3)

As such, if \nu \ll \scrL d, we have \rho a\lambda \ll \scrL d as well.

Proof. Observe that if

\gamma 0| \{ | x - y| \leq \lambda \} = (I,T\lambda )\#\mu 
a,(6.4)

then we are done, since then for E \subset \Omega Borel,

\rho a\lambda (E) = (\pi y)\#(I,T\lambda )\#\mu 
a(E)

= (\pi y)\#\gamma 0| \{ | x - y| \leq \lambda \} (E)

= \gamma 0(\Omega \times E \cap \{ | x - y| \leq \lambda \} )
\leq \gamma 0(\Omega \times E)

= \nu (E).

So, we focus on proving (6.4). Note first that if \gamma 0| \{ | x - y\} \leq \lambda is the zero measure, then
(6.4) automatically holds. We therefore proceed assuming that

\gamma 0| \{ | x - y| \leq \lambda \} (\Omega \times \Omega )> 0.

Recall the potential \varphi \lambda , optimal in (5.1). Since \varphi c2
\lambda is Lipschitz, it is differentiable

almost everywhere. Thus, \scrL d(\partial \Omega ) = 0 implies that there exists a Borel measurable
set G \subset \Omega \setminus \partial \Omega such that \varphi c2

\lambda is differentiable on G, T\lambda (x) = x - \nabla \varphi c2
\lambda (x) on G, and

\scrL d(G
c) = 0. We therefore have, for E1,E2 \subset \Omega Borel,

\gamma 0| \{ | x - y| \leq \lambda \} (E1 \times E2) = \gamma 0(E1 \times E2 \cap \{ | x - y| \leq \lambda \} )
= \gamma 0(E1 \times E2 \cap \{ | x - y| \leq \lambda \} \cap spt(\gamma 0)\cap G\times \Omega ).

Here, the second equality holds since \mu \ll \scrL d. Next, we claim that

\{ | x - y| \leq \lambda \} \cap spt(\gamma 0)\cap G\times \Omega \subset \Gamma T\lambda 
(G),

the latter being the graph of the map T\lambda over G. Indeed, if (x, y) is in the set on the
left-hand side, then according to Lemma 6.2 we get y = x - \nabla \varphi c2

0 (x) = T\lambda (x), which
proves the claim. We observe, however, that

(E1 \times E2)\cap \Gamma T\lambda 
(G) = (E1 \cap T - 1

\lambda (E2)\times \Omega )\cap \Gamma T\lambda 
(G).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1140 TRISTAN MILNE AND ADRIAN NACHMAN

As such,

\gamma 0| \{ | x - y| \leq \lambda \} (E1 \times E2) = \gamma 0(E1 \times E2 \cap \{ | x - y| \leq \lambda \} \cap spt(\gamma 0)\cap G\times \Omega )

= \gamma 0(E1 \cap T - 1
\lambda (E2)\times \Omega \cap \{ | x - y| \leq \lambda \} )

= \gamma 0| \{ | x - y| \leq \lambda \} (E1 \cap T - 1
\lambda (E2)\times \Omega )

= \mu a(E1 \cap T - 1
\lambda (E2))

= (I,T\lambda )\#\mu 
a(E1 \times E2).

Thus, \gamma 0| \{ | x - y| \leq \lambda \} and (I,T\lambda )\#\mu 
a agree on all measurable rectangles E1 \times E2. Since

\mu a(\Omega ) = \gamma 0| \{ | x - y| \leq \lambda \} (\Omega \times \Omega ), we can multiply \gamma 0| \{ | x - y| \leq \lambda \} and (I,T\lambda )\#\mu 
a by the

same constant to obtain probability measures. These probability measures agree on
all measurable rectangles, and hence by Theorem 3.3 of [5] they are equal. This
implies (6.4), completing the proof.

Remark 6.4. We note that Lemma 6.3 implies that absolute continuity of \mu is not
enough to obtain \rho \lambda \ll \scrL d. Indeed, if \nu and \scrL d are singular and \mu a is nonzero, then
\rho a\lambda is nonzero and Lemma 6.3 implies that \rho a\lambda and \scrL d are singular. Thus, for singular
\nu , \rho \lambda may have a nonzero singular component with respect to Lebesgue measure.

6.3. Proof that \bfitrho \bfitb 
\bfitlambda \ll \bfscrL \bfitd . The general idea of the argument is to take E \subset \Omega 

Borel with measure 0 and write

\rho b\lambda (E) = (\pi x)\#\gamma 0| | x - y| >\lambda (T
 - 1
\lambda (E))

= \gamma 0(T
 - 1
\lambda (E)\times \Omega \cap \{ | x - y| >\lambda \} \cap spt(\gamma 0)).

We will show that the set in the preceding line is contained in a set of the form A\times \Omega 
for A Borel with measure 0, which will guarantee that \rho b\lambda (E) = 0 since \mu \ll \scrL d.

We will start with some simple observations about the set of (x, y) inside the
support of \gamma 0 with | x  - y| > \lambda . We will use the notion of the transport rays of a
1-Lipschitz function (see, for example, Definition 3.7 of [30]).

Lemma 6.5. If (x, y)\in spt(\gamma 0) with | x - y| >\lambda , then x and y are in transport rays
of \varphi c2

\lambda /\lambda and  - \varphi \lambda /\lambda , respectively. If \varphi c2
\lambda is differentiable at x and x is an interior

point of \Omega , then the increasing directions of both rays are parallel to \nabla \varphi c2
\lambda (x). Further,

x - \nabla \varphi c2
\lambda (x) is in the same ray as y, and this is the unique transport ray of  - \varphi \lambda /\lambda 

containing x - \nabla \varphi c2
\lambda (x).

Proof. Since (x, y)\in spt(\gamma 0), Kantorovich duality gives us that

\varphi c2
\lambda (x) +\varphi \lambda (y) = c2,\lambda (x, y).

By the equality \varphi c2
\lambda =\varphi 

c2,\lambda 
\lambda ,

\varphi c2
\lambda (x) = inf

z\in \Omega 
c2,\lambda (x, z) - \varphi \lambda (z),

and so we know the infimum is obtained at y. Note that since | x - y| >\lambda , by traversing
the segment [x, y] starting at y we obtain a rate of decrease of \lambda per unit distance
for c2,\lambda (x, \cdot ). Since  - \varphi \lambda is \lambda -Lipschitz, we must therefore have that the infimum
is also obtained at every point z \in [x, y] with | x  - z| \geq \lambda . This is possible only if
 - \varphi \lambda increases at maximal rate along this nontrivial segment, and thus [x+\lambda y - x

| y - x| , y],

and therefore y, is contained in a transport ray of  - \varphi \lambda /\lambda . This transport ray has
increasing direction parallel to x - y, which will be needed later.
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1141

Since \varphi c2
\lambda \in \lambda -Lip(\Omega ) as well, we can prove that x is in a transport ray of \varphi c2

\lambda /\lambda 
with a nearly identical argument, starting from the equality

\varphi \lambda (y) = inf
z\in \Omega 

c2,\lambda (y, z) - \varphi c2
\lambda (z),

which holds since \varphi \lambda is c2,\lambda -concave.
If \varphi c2 is differentiable at x, then it is clear that\nabla \varphi c2(x) is parallel to the increasing

direction of the transport ray of \varphi c2/\lambda that x is in. On the other hand, the increasing
direction of the transport ray of  - \varphi \lambda /\lambda containing y is parallel to x  - y, which is
parallel to \nabla \varphi c2

\lambda by Lemma 6.2. By the same lemma we have

x+ \lambda 
y - x

| y - x| 
= x - \nabla \varphi c2

\lambda (x),

which verifies that x - \nabla \varphi c2
\lambda (x) is in the same transport ray of  - \varphi \lambda /\lambda as y.

To see that the transport ray containing x  - \nabla \varphi c2
\lambda (x) is unique, suppose x  - 

\nabla \varphi c2
\lambda (x) is contained in two transport rays of  - \varphi \lambda /\lambda . As we have shown, one of these

has decreasing direction parallel to  - \nabla \varphi c2
\lambda (x) and, since | x - y| > \lambda , nonzero length

in this direction. Noting that two transport rays can only collide at a point which is
the upper (or lower) endpoint of both rays (see, for example, Lemma 10 of [7]), we
get that if x - \nabla \varphi c2

\lambda (x) is in a second ray, it must be at the upper endpoint of that
ray. Let the decreasing direction of the other ray be given by the unit vector v. We
compute

d

dt
| t=0c2,\lambda (x,x - \nabla \varphi c2

\lambda (x) + tv) - \varphi \lambda (x - \nabla \varphi c2
\lambda (x) + tv) = \lambda 

\biggl\langle 
v, - 

\nabla \varphi c2
\lambda (x)

| \nabla \varphi c2
\lambda (x)| 

\biggr\rangle 
 - \lambda 

= \lambda 

\biggl( \biggl\langle 
v,

y - x

| y - x| 

\biggr\rangle 
 - 1

\biggr) 
< 0,

the final inequality coming from the fact that v \not = y - x
| y - x| , and both have unit norm.

As such, t \mapsto \rightarrow c2,\lambda (x,x - \nabla \varphi c2
\lambda (x) + tv) - \varphi \lambda (x - \nabla \varphi c2

\lambda (x) + tv) is strictly decreasing
for t \in (0, \epsilon ) for some \epsilon , contradicting the fact that the infimum of c2,\lambda (x, y) - \varphi \lambda (y)
is obtained at x - \nabla \varphi c2

\lambda (x).

We can now prove that the upper endpoints of the transport rays of  - \varphi \lambda /\lambda 
correspond to the upper endpoints of the transport rays of \varphi c2

\lambda /\lambda .

Lemma 6.6. Suppose (x, y) \in spt(\gamma 0) with | x - y| > \lambda , and suppose \varphi c2
\lambda is differ-

entiable at x and x is an interior point of \Omega . If x - \nabla \varphi c2
\lambda (x) is at the upper endpoint

of its transport ray of  - \varphi \lambda /\lambda then x is at the upper endpoint of a transport ray of
\varphi c2
\lambda /\lambda .

Proof. From Lemma 6.5 we have that x is in a transport ray of \varphi c2
\lambda /\lambda . Suppose it

is not the upper endpoint. Then there exists w on the same transport ray obtaining
a strictly larger value of \varphi c2

\lambda . As such

\varphi \lambda (y) = c2,\lambda (x, y) - \varphi c2
\lambda (x)

= c2,\lambda (x, y) - \varphi c2
\lambda (w) + \lambda | w - x| 

= c2,\lambda (w,y) - \varphi c2
\lambda (w).

Here the last line holds because the transport ray that x is in is parallel to the segment
[x, y]. Since \varphi c2

\lambda =\varphi 
c2,\lambda 
\lambda ,

\varphi c2
\lambda (w) = inf

z\in \Omega 
c2,\lambda (w,z) - \varphi \lambda (z),
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1142 TRISTAN MILNE AND ADRIAN NACHMAN

and the infimum is obtained at y. Since | w  - y| > \lambda + | w  - x| , we obtain that all
points on the segment [w + \lambda y - w

| y - w| , y] are on a transport ray of  - \varphi \lambda /\lambda . The point

x - \nabla \varphi c2
\lambda (x) is in the interior of this ray and thus is not the upper endpoint.

We can now prove that \rho b\lambda is absolutely continuous with respect to Lebesgue
measure. The general argument is the following. Take E Borel negligible, x\in T - 1

\lambda (E),
and suppose that there exists y such that (x, y) \in spt(\gamma 0) with | x  - y| > \lambda . Then,
ignoring x at the start of transport rays of \varphi c2

\lambda /\lambda (which is a Borel negligible set
anyway), we can show that x= z - \nabla \varphi \lambda (z) for z \in E. Since x is not at the start of its
transport ray, z cannot be at the start of its transport ray. Away from the endpoints
of transport rays the map z \mapsto \rightarrow z - \nabla \varphi \lambda (z) is Lipschitz,

6 allowing us to conclude that
our set of x is Lebesgue negligible.

Proposition 6.7. The measure \rho b\lambda satisfies \rho b\lambda \ll \scrL d.

Proof. Let E \subset \Omega be Borel negligible. Then

\rho b\lambda (E) = (\pi x)\#\gamma 0| | x - y| >\lambda (T
 - 1
\lambda (E))

= \gamma 0((T
 - 1
\lambda (E)\cap \scrE c \cap G)\times \Omega \cap \{ | x - y| >\lambda \} \cap spt(\gamma 0)),(6.5)

where \scrE c is the complement of the set of ray endpoints of \varphi c2
\lambda /\lambda , and G is as before.

Both sets are Borel and have full Lebesgue measure,7 justifying the equality (6.5). If
(x, y) is in the set appearing in (6.5), then by Lemma 6.5, x - \nabla \varphi c2

\lambda (x) is in a unique
transport ray of  - \varphi \lambda /\lambda , and by Lemma 6.6 x - \nabla \varphi c2

\lambda (x) is not at the upper endpoint
of that ray. Since | x - y| > \lambda , x - \nabla \varphi c2

\lambda (x) is also not at the lower endpoint of that
ray. By Lemma 3.6 of [30],  - \varphi \lambda /\lambda is differentiable at x - \nabla \varphi c2

\lambda (x), and Lemma 6.5
implies that

x= x - \nabla \varphi c2
\lambda (x) - \nabla \varphi \lambda (x - \nabla \varphi c2

\lambda (x)) = T\lambda (x) - \nabla \varphi \lambda (T\lambda (x)).

Thus, if (x, y) is in the set appearing in (6.5), then x = z  - \nabla \varphi \lambda (z) for some z \in E
and in the interior of a transport ray of  - \varphi \lambda /\lambda . As in Proposition 6 of [25], for each
j \in \{ 1,2, . . .\} set Aj as the set of points z that are on a transport ray of  - \varphi \lambda /\lambda and
more than distance 1/j from either endpoint, and recall that by Lemma 22 of [7],
 - \nabla \varphi \lambda is a Lipschitz function on Aj . We therefore obtain that if (x, y) is in the set
appearing in (6.5), then

x\in 
\infty \bigcup 
j=1

(I  - \nabla \varphi \lambda )(E \cap Aj).

Since E is Borel negligible, and \nabla \varphi \lambda is a Lipschitz map on Aj , we obtain that the set
(I - \nabla \varphi \lambda )(E\cap Aj) is Lebesgue measurable for all j and has measure 0. By regularity of
Lebesgue measure, there exists for each j a Borel set Uj containing (I - \nabla \varphi c2

\lambda )(E\cap Aj)
with zero Lebesgue measure. As such,

\rho b\lambda (E)\leq 
\infty \sum 
j=1

\gamma 0(Uj \times \Omega )=

\infty \sum 
j=1

\mu (Uj) = 0

because \mu \ll \scrL d.

We have therefore proven Proposition 6.1, and thus statement 1 of Theorem
1.6, by proving that \rho b\lambda and \rho a\lambda are absolutely continuous (Lemma 6.3 and
Proposition 6.7).

6See the proof of Lemma 22 of [7] or Proposition 6 of [25].
7For a proof that \scrL d(\scrE ) = 0, see Lemma 25 of [7] or Lemma 3.1.8 of [16].
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1143

7. Characterization of an optimal map for the Huber cost. In this sec-
tion we will prove statements 2 and 3 of Theorem 1.6. The essential result is the
characterization of an optimal map transporting \nu to \mu for the Huber cost c2,\lambda as a
composition of a Wasserstein 2 optimal map with a Wasserstein 1 optimal map. We
note that the existence of an optimal map for the cost c2,\lambda does not follow trivially
from standard results in the optimal transport literature (e.g., Theorem 1.17 of [30])
since the cost c2,\lambda (x, y) is not a strictly convex function of | x - y| .

The following lemma proves that the gradient of \varphi \lambda is \nu almost surely unchanged
by applying an optimal transport map for W1(\nu , \rho \lambda ), and will be useful in proving the
existence of an optimal transport map for the Huber cost. Throughout this section
we tacitly assume the hypotheses of Theorem 1.6.

Lemma 7.1. Let S\lambda be an optimal transport map for W1(\nu , \rho \lambda ), which exists since
\nu \ll \scrL d. Let \varphi \lambda be a c2,\lambda -concave solution to (5.4). Then \nu almost everywhere \nabla \varphi \lambda (y)
and \nabla \varphi \lambda (S\lambda (y)) exist. Further if S\lambda (y) \not = y, they satisfy

\nabla \varphi \lambda (y) =\nabla \varphi \lambda (S\lambda (y)) = \lambda 
y - S\lambda (y)

| y - S\lambda (y)| 
.(7.1)

Proof. The potential \varphi \lambda is c2,\lambda -concave, and thus \varphi \lambda \in \lambda -Lip(\Omega ). Since \nu \ll \scrL d,
\varphi \lambda is therefore differentiable \nu almost everywhere. Further,

\nu (\{ y | \nabla \varphi \lambda (S\lambda (y)) exists\} ) = \nu (S - 1
\lambda (\{ z | \nabla \varphi \lambda (z) exists\} )

= \rho \lambda (\{ z | \nabla \varphi \lambda (z) exists\} )
= 1,

since \rho \lambda \ll \scrL d (Proposition 6.1). So \nabla \varphi \lambda (S\lambda (y)) exists \nu almost everywhere as well.
Since \varphi \lambda solves (5.1) via Lemma 5.2, we obtain via Theorem 5.6 that \varphi \lambda /\lambda is a Kan-
torovich potential for W1(\nu , \rho \lambda ). Since S\lambda is an optimal transport map for W1(\nu , \rho \lambda )
we obtain that for \nu almost all y \in \Omega ,

\lambda | S\lambda (y) - y| =\varphi \lambda (y) - \varphi \lambda (S\lambda (y)).

Thus, if S\lambda (y) \not = y, we obtain that [y,S\lambda (y)] is in a transport ray of \varphi \lambda /\lambda . Via Lemma
3.6 of [30] we obtain (7.1) whenever \varphi \lambda is differentiable at both y and S\lambda (y).

Now we can prove the existence of an optimal transport map S0 from \nu to \mu 
under the cost c2,\lambda by composing a Wasserstein 1 optimal map from \nu to \rho \lambda with
a Wasserstein 2 optimal map from \rho \lambda to \mu . Conversely, we will prove that all such
optimal S0 can be written in this way. The following result proves statement 2 of
Theorem 1.6.

Lemma 7.2. Let \varphi \lambda be a c2,\lambda -concave solution to (5.4). If R\lambda is a Borel map
almost everywhere equal to I  - \nabla \varphi \lambda , and T\lambda is a Borel map almost everywhere equal
to I  - \nabla \varphi c2

\lambda , then

R\lambda \circ T\lambda (x) = x(7.2)

\mu almost everywhere, so we write R\lambda as T - 1
\lambda . A map S0 is an optimal transport

map for transporting \nu to \mu under the cost c2,\lambda if and only if S0 can be written as
S0 = T - 1

\lambda \circ S\lambda , where S\lambda is an optimal map for W1(\nu , \rho \lambda ).
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1144 TRISTAN MILNE AND ADRIAN NACHMAN

Proof. The claim (7.2) is well known, and it follows since \varphi \lambda is a Kantorovich
potential for 1

2W
2
2 (\rho \lambda , \mu ) and T\lambda is an optimal transport map for 1

2W
2
2 (\mu ,\rho \lambda ), and

thus

\varphi c2
\lambda (x) +\varphi \lambda (T\lambda (x)) =

1

2
| x - T\lambda (x)| 2,

\mu almost everywhere. Using \rho \lambda \ll \scrL d, one can then easily show (7.2). Let S0 be
given by S0 = T - 1

\lambda \circ S\lambda . This same equality also implies that (T - 1
\lambda )\#\rho \lambda = \mu , and so

(S0)\#\nu = \mu . We now wish to prove that for \nu almost all y,

c2,\lambda (S0(y), y) = c2,\lambda (S0(y), S\lambda (y)) + \lambda | y - S\lambda (y)| .

This is clear if S\lambda (y) = y. If S\lambda (y) \not = y, then this equality is an immediate consequence
of Lemma 7.1. We therefore compute\int 

\Omega 

c2,\lambda (S0(y), y)d\nu (y) =

\int 
\Omega 

c2,\lambda (S0(y), S\lambda (y))d\nu (y) + \lambda 

\int 
\Omega 

| y - S\lambda (y)| d\nu (y)

=

\int 
\Omega 

c2(T0(z), z)d\rho \lambda (z) + \lambda W1(\rho \lambda , \nu )

=
1

2
W 2

2 (\mu ,\rho \lambda ) + \lambda W1(\rho \lambda , \nu )

= \scrI c2,\lambda (\mu ,\nu ),

where the last line follows from Corollary 5.8. This verifies that S0 is optimal for
transporting \nu to \mu with the pointwise cost c2,\lambda .

Conversely, suppose S0 is optimal for transporting \nu to \mu under this cost. If we can
prove that T\lambda \circ S0 is optimal forW1(\nu , \rho \lambda ), we will be done. Clearly, (T\lambda \circ S0)\#\nu = \rho \lambda ,
and since \varphi \lambda /\lambda is a Kantorovich potential for W1(\nu , \rho \lambda ) via Theorem 5.6, optimality
of this map will be proved if we can show that

\lambda | y - T\lambda (S0(y))| =\varphi \lambda (y) - \varphi \lambda (T\lambda (S0(y))),(7.3)

\nu almost everywhere. To see this, observe that (S0, I)\#\nu is an optimal plan for
(5.11), and (S0(y), y) is in the support of this plan for \nu almost all y. Conditioning
\nu on | S0(y) - y| \leq \lambda , we obtain y= T\lambda (S0(y)) with probability 1 via Lemma 6.2, and
thus (7.3) holds trivially. Conditioning on | S0(y) - y| >\lambda , we may use Lemma 6.5 to
obtain that [T\lambda (S0(y)), y] is in a transport ray of \varphi \lambda /\lambda \nu almost surely, which proves
(7.3) in this case.

The following result proves statement 3 of Theorem 1.6 by demonstrating that
by applying the soft thresholding operator (1.14) to the map S0, one recovers S\lambda .

Proposition 7.3. Let S0 = T - 1
\lambda \circ S\lambda be an optimal transport map from \nu to \mu 

for the cost c2,\lambda as obtained in Lemma 7.2. Then \nu almost everywhere,

S\lambda (y) = y+ s\lambda (| S0(y) - y| ) S0(y) - y

| S0(y) - y| 
,

where s\lambda (| S0(y) - y| ) S0(y) - y
| S0(y) - y| = 0 if S0(y) = y.
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AN OPTIMAL TRANSPORT ANALOGUE OF THE ROF MODEL 1145

Proof. Take \varphi \lambda and T - 1
\lambda as in Lemma 7.2, and set

E := S - 1
\lambda (\{ z | T - 1

\lambda (z) = z  - \nabla \varphi \lambda (z)\} ).

Then E has full \nu measure. If y \in E and S\lambda (y) = y, then S0(y) = T - 1
\lambda (y). Since

\varphi \lambda \in \lambda -Lip(\Omega ), we obtain that

y+ s\lambda (| S0(y) - y| ) S0(y) - y

| S0(y) - y| 
= y= S\lambda (y).

If y \in E and S\lambda (y) \not = y, then by Lemma 7.1, | S0(y) - y| >\lambda \nu almost surely. Thus,

y+ s\lambda (| S0(y) - y| ) S0(y) - y

| S0(y) - y| 
= y+ (| S0(y) - y|  - \lambda ))

S\lambda (y) - y

| S\lambda (y) - y| 

= y+ | S\lambda (y) - y| S\lambda (y) - y

| S\lambda (y) - y| 
= S\lambda (y).

8. Iterative procedures involving (WROF). In this section we study the
iterative procedures described in subsections 1.2 and 1.3. The main content is a proof
of Proposition 1.8 and Theorem 1.10.

8.1. Iterative regularization. Here we will prove our iterative regularization
result Proposition 1.8. Recall the setting; we take \mu ,\nu \ll \scrL d, and (\lambda n)

\infty 
n=0 a sequence

of positive step sizes with sum converging to +\infty . Set \mu 0 := \mu , and for n\geq 0 define

\mu n+1 := argmin
\rho \in \scrP (\Omega )

1

2
W 2

2 (\rho ,\mu n) + \lambda nW1(\rho , \nu ).

We note that (\mu n)
\infty 
n=1 is well defined given Lemma 5.3, Theorem 5.6, and Proposition

6.1. The first two results establish the existence of a unique solution to the minimiza-
tion problem in (1.17) when \mu \ll \scrL d, and the latter guarantees that this solution will
be absolutely continuous as well.

Before we analyze the convergence of the sequence (\mu n)
\infty 
n=1, we establish a simple

estimate on W1(\mu n, \nu ).

Lemma 8.1. Let \Omega be convex and compact with nonnegligible interior. Take
\mu \ll \scrL d, and let \rho \lambda solve (WROF). Denoting an arbitrary optimal transport plan for
the cost c2,\lambda from \mu to \nu as \gamma 0, define \mu 

a and \mu b as in (6.1). Then

W1(\rho \lambda , \nu )\leq \mu b(\Omega )diam(\Omega ),(8.1)

where diam(\Omega ) = sup\{ | x - y| | x, y \in \Omega \} .
Proof. Recall the definitions of \rho a\lambda and \rho b\lambda from (6.2). Note that if \rho b\lambda (\Omega ) = 0, we

obtain via Lemma 6.3 that \nu = \rho a\lambda = \rho \lambda , and thus (8.1) holds. We therefore proceed
assuming that \rho b\lambda (\Omega ) \not = 0. We have

W1(\rho \lambda , \nu ) = sup
u\in 1-Lip(\Omega )

\langle u,\rho \lambda  - \nu \rangle 

= sup
u\in 1-Lip(\Omega )

\langle u,\rho a\lambda + \rho b\lambda  - \nu \rangle 

= sup
u\in 1-Lip(\Omega )

\langle u,\rho b\lambda  - (\nu  - \rho a\lambda )\rangle .
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1146 TRISTAN MILNE AND ADRIAN NACHMAN

Via Lemma 6.3 we get that \nu  - \rho a\lambda is a nonnegative measure. Moreover, it has the
same total mass as \rho b\lambda . As such

W1(\rho \lambda , \nu ) = \rho b\lambda (\Omega ) sup
u\in 1-Lip(\Omega )

\biggl\langle 
u,

\rho b\lambda 
\rho b\lambda (\Omega )

 - \nu  - \rho a\lambda 
(\nu  - \rho a\lambda )(\Omega )

\biggr\rangle 
= \mu b(\Omega )W1

\biggl( 
\rho b\lambda 

\rho b\lambda (\Omega )
,

\nu  - \rho a\lambda 
(\nu  - \rho a\lambda )(\Omega )

\biggr) 
\leq \mu b(\Omega )diam(\Omega ),

as claimed.

We can now prove our convergence result for (\mu n)
\infty 
n=1, which relies on Lemma 8.1.

Proof of Proposition 1.8. We first establish that W1(\mu n, \nu ) is monotonically de-
creasing in n. Indeed, by definition of \mu n,

W1(\mu n, \nu )\leq W1(\mu n - 1, \nu ) - 
1

2\lambda n - 1
W 2

2 (\mu n, \mu n - 1)\leq W1(\mu n - 1, \nu ).

Iterating the first inequality, we also obtain that

W1(\mu n, \nu )\leq W1(\mu ,\nu ) - 
n - 1\sum 
i=0

1

2\lambda i
W 2

2 (\mu i+1, \mu i).

Thus,

\infty \sum 
i=0

1

2\lambda i
W 2

2 (\mu i+1, \mu i)<\infty .(8.2)

For each i, let \gamma i be an optimal plan for the transport from \mu i to \nu under the cost
c2,\lambda i , and define

\mu b
i := (\pi x)\#(\gamma i| | x - y| >\lambda i

).

Let \varphi i be a solution to (5.1) with \mu replaced by \mu i and \lambda replaced by \lambda i. Since
I  - \nabla \varphi c2

i is almost everywhere equal to an optimal transport map from \mu i to \mu i+1

(see Theorem 5.6), and using Lemma 6.2, we obtain

1

2\lambda i
W 2

2 (\mu i, \mu i+1)\geq 
1

2\lambda i
\lambda 2i\mu 

b
i (\Omega ) =

1

2
\lambda i\mu 

b
i (\Omega ).

As such, (8.2) implies

\infty \sum 
i=1

\lambda i\mu 
b
i (\Omega )<\infty .(8.3)

By (1.16), we obtain that lim infi \mu 
b
i (\Omega ) = 0. Lemma 8.1 implies that

W1(\mu i+1, \nu )\leq \mu b
i (\Omega )diam(\Omega ).

Since lim infi \mu 
b
i (\Omega ) = 0, we therefore obtain

lim inf
i

W1(\mu i, \nu ) = 0,(8.4)

as well. But W1(\mu i, \nu ) is monotonically decreasing in i, and so (8.4) implies (1.18).

8.2. Multiscale transport and a nonlinear energy decomposition. In this
section we prove Theorem 1.10. We already have most of the necessary ingredients.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Let us recall the setting of this procedure. We assume \mu \ll \scrL d and suppose \lambda 0 is
given. For each n\geq 0, set \lambda n+1 = \lambda n/2 and define

\nu n+1 := argmin
\rho \in \scrP (\Omega )

1

2
W 2

2 (\rho ,\mu ) + \lambda nW1(\rho , \nu n),(8.5)

where \nu 0 := \nu .

Remark 8.2. This procedure consists of iteratively solving (4.1), starting with y\ast 0
as \nu 0 and replacing it at each stage by \nu n, as well as halving the scale parameter. If
the same is done in the context of ROF, starting with y\ast 0 = 0, one obtains a sequence
of functions (wn)

\infty 
n=1 which are the partial sums of the multiscale decomposition in

Theorem 1.9. In this light (8.5) is analogous to (1.19).

Proof of Theorem 1.10. The assumption \mu \ll \scrL d, together with Lemma 5.3 and
Theorem 5.6, guarantees for all n that the argmin in (1.23) exists and is unique. To
prove statement 1, we note that by (1.11)

1

2
W 2

2 (\mu ,\nu n)\leq 
1

2
\lambda 2n - 1 = 2 - 2n+1\lambda 20,

which proves (1.24). To obtain the energy equality (1.25), we observe that

1

2
W 2

2 (\mu ,\nu ) =
1

2
W 2

2 (\mu ,\nu 1) +
1

2
W 2

2 (\mu ,\nu 0) - 
1

2
W 2

2 (\mu ,\nu 1) - \lambda 0W1(\nu 0, \nu 1)

+ \lambda 0W1(\nu 0, \nu 1)

=
1

2
W 2

2 (\mu ,\nu 1) +D\lambda 0
(\nu 0, \nu 1) + \lambda 0W1(\nu 0, \nu 1),

where in the second line we have used the equality of (WROF) and (5.9), proven in
Theorem 5.6. Iterating this equality, we obtain

1

2
W 2

2 (\mu ,\nu ) =
1

2
W 2

2 (\mu ,\nu k) +

k - 1\sum 
n=0

D\lambda n(\nu n, \nu n+1) + \lambda nW1(\nu n, \nu n+1).

Letting k go to infinity and using (1.24), we obtain (1.25).
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